Boccuni Laura, Marka Frieda, Salzmann Manuel, Schirripa Alessia, Ableitner Elisabeth, Siller Magdalena, Brekalo Mira, Haider Patrick, Stojkovic Stefan, Neumayer Christoph, Örd Tiit, Kollmann Karoline, Assinger Alice, Decker Thomas, Köcher Thomas, Fischer Michael B, Mußbacher Marion, Bergthaler Andreas, Hengstenberg Christian, Podesser Bruno K, Kaikkonen Minna U, Wojta Johann, Hohensinner Philipp J
Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.
Department of Internal Medicine II/Cardiology, Medical University of Vienna, Vienna, Austria.
Sci Adv. 2025 Aug 29;11(35):eadw9952. doi: 10.1126/sciadv.adw9952. Epub 2025 Aug 27.
Macrophage-to-foam cell transition is an integral part of atherosclerotic plaque progression. Particularly, oxidized low-density lipoprotein (oxLDL) is a driving factor in foam cell formation, altering macrophage function and metabolism. The aim of our research was to understand the impact of oxLDL-induced mitochondrial reactive oxygen species on macrophage-to-foam cell differentiation. We demonstrate that macrophage oxLDL-derived superoxide modulates mitochondrial metabolic reprogramming, facilitating foam cell formation. Mechanistically, mitochondrial superoxide drives signal transducers and activators of transcription 5 (STAT5) activation, leading to reduced tricarboxylic acid cycle activity. In parallel, mitochondrial superoxide enhances chromatin accessibility at STAT5 target genes, establishing a distinct STAT5 signaling signature in foam cells ex vivo and in human and mouse plaques in vivo. Inhibition of STAT5 during atherosclerosis progression prevents the differentiation of macrophages to mature Trem2Gpnmb foam cells. Collectively, our data describe an oxLDL-induced, mitochondrial superoxide-dependent STAT5 activation that leads to a self-amplifying feedback loop of reciprocal mitochondrial superoxide production and STAT5 activation, ultimately driving macrophage-to-foam cell transition.
巨噬细胞向泡沫细胞的转变是动脉粥样硬化斑块进展的一个重要组成部分。特别是,氧化型低密度脂蛋白(oxLDL)是泡沫细胞形成的驱动因素,它会改变巨噬细胞的功能和代谢。我们研究的目的是了解oxLDL诱导的线粒体活性氧对巨噬细胞向泡沫细胞分化的影响。我们证明,巨噬细胞中oxLDL衍生的超氧化物调节线粒体代谢重编程,促进泡沫细胞形成。从机制上讲,线粒体超氧化物驱动信号转导和转录激活因子5(STAT5)的激活,导致三羧酸循环活性降低。同时,线粒体超氧化物增强了STAT5靶基因处的染色质可及性,在体外的泡沫细胞以及体内的人和小鼠斑块中建立了独特的STAT5信号特征。在动脉粥样硬化进展过程中抑制STAT5可防止巨噬细胞分化为成熟的Trem2Gpnmb泡沫细胞。总体而言,我们的数据描述了一种oxLDL诱导的、线粒体超氧化物依赖性的STAT5激活,该激活导致线粒体超氧化物产生和STAT5激活的相互自放大反馈回路,最终驱动巨噬细胞向泡沫细胞的转变。