Chen Yanling, Liu Xun, Liu Yixuan, Li Yujia, Li Dingxiang, Mei Zhigang, Deng Yihui
School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, 410208, China.
Cell Death Dis. 2025 Aug 27;16(1):652. doi: 10.1038/s41419-025-07936-y.
Diabetes mellitus (DM), a metabolic disease of globally health concern, is pathologically attributed to mitochondrial dysfunction, an essential component in disease progression. Mitochondrial quality control (MQC) acts as a critical defense mechanism for metabolic homeostasis, yet its implications in DM and its complications remain incompletely understood. This study thoroughly summarizes emerging evidence that delineates the molecular processes of MQC, with an emphasis on effector protein post-translational regulation, upstream signaling hubs, and interactions with other metabolic processes including ferroptosis and lipid metabolism. We highlight newly discovered processes involving mitochondrial-derived vesicles, licensed mitophagy, and mitocytosis that broaden the regulatory landscape of MQC, going beyond the traditionally recognized process including biogenesis, dynamics and mitophagy. MQC imbalance exacerbates insulin resistance, while impaired insulin signaling reciprocally compromises mitochondrial function, creating a vicious cycle of metabolic deterioration. Despite tissue-specific pathophysiology, diabetic complications exhibit identical MQC impairment including suppressed biogenesis, fission-fusion imbalance, and deficient mitophagy. Emerging therapies including clinical hypoglycemic agents and bioactive phytochemicals demonstrate therapeutic potential by restoring MQC. However, current strategies remain anchored to classical pathways, neglecting novel MQC mechanisms such as mitocytosis. Addressing this gap demands integration of cutting-edge MQC insights into drug discovery, particularly for compounds modulating upstream regulators. Future studies must prioritize mechanistic dissection of MQC novel targets and their translational relevance in halting metabolic collapse of diabetes progression. Since mitochondrial function is a cornerstone of metabolic restoration, synergizing precision MQC modulation with multi-target interventions, holds transformative potential for refine diabetic complications therapeutics.
糖尿病(DM)是一种全球关注的代谢性疾病,其病理归因于线粒体功能障碍,这是疾病进展的一个重要组成部分。线粒体质量控制(MQC)作为代谢稳态的关键防御机制,但其在糖尿病及其并发症中的作用仍未完全了解。本研究全面总结了新出现的证据,这些证据描绘了MQC的分子过程,重点是效应蛋白的翻译后调控、上游信号枢纽以及与其他代谢过程(包括铁死亡和脂质代谢)的相互作用。我们强调了新发现的过程,包括线粒体衍生囊泡、许可性线粒体自噬和线粒体胞吞作用,这些过程拓宽了MQC的调控范围,超越了传统认可的过程,如生物发生、动力学和线粒体自噬。MQC失衡会加剧胰岛素抵抗,而受损的胰岛素信号反过来会损害线粒体功能,从而形成代谢恶化的恶性循环。尽管存在组织特异性病理生理学,但糖尿病并发症表现出相同的MQC损伤,包括生物发生受抑制、裂变-融合失衡和线粒体自噬缺陷。包括临床降糖药物和生物活性植物化学物质在内的新兴疗法通过恢复MQC显示出治疗潜力。然而,目前的策略仍然局限于经典途径,忽视了线粒体胞吞作用等新的MQC机制。解决这一差距需要将前沿的MQC见解整合到药物发现中,特别是对于调节上游调节因子的化合物。未来的研究必须优先对MQC新靶点进行机制剖析及其在阻止糖尿病进展的代谢崩溃中的转化相关性。由于线粒体功能是代谢恢复的基石,将精确的MQC调节与多靶点干预协同作用,对改善糖尿病并发症治疗具有变革潜力。