Suppr超能文献

可卡因化学遗传学通过合成生理学抑制觅药行为。

Cocaine chemogenetics blunts drug-seeking by synthetic physiology.

作者信息

Gomez Juan L, Magnus Christopher J, Bonaventura Jordi, Solis Oscar, Curry Fallon P, Levinstein Marjorie R, Budinich Reece C, Carlton Meghan L, Ventriglia Emilya N, Lam Sherry, Wang Le, Schoenborn Ingrid, Dunne William, Michaelides Michael, Sternson Scott M

机构信息

Biobehavioral Imaging and Molecular Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA.

Howard Hughes Medical Institute; Janelia Research Campus, Ashburn, VA, USA.

出版信息

Nature. 2025 Aug 27. doi: 10.1038/s41586-025-09427-8.

Abstract

Chemical feedback is ubiquitous in physiology but is challenging to study without perturbing basal functions. One example is addictive drugs, which elicit a positive-feedback cycle of drug-seeking and ingestion by acting on the brain to increase dopamine signalling. However, interfering with this process by altering basal dopamine also adversely affects learning, movement, attention and wakefulness. Here, inspired by physiological control systems, we developed a highly selective synthetic physiology approach to interfere with the positive-feedback cycle of addiction by installing a cocaine-dependent opposing signalling process into this body-brain signalling loop. We used protein engineering to create cocaine-gated ion channels that are selective for cocaine over other drugs and endogenous molecules. Expression of an excitatory cocaine-gated channel in the rat lateral habenula, a brain region that is normally inhibited by cocaine, suppressed cocaine self-administration without affecting food motivation. This artificial cocaine-activated chemogenetic process reduced the cocaine-induced extracellular dopamine rise in the nucleus accumbens. Our results show that cocaine chemogenetics is a selective approach for countering drug reinforcement by clamping dopamine release in the presence of cocaine. In the future, chemogenetic receptors could be developed for additional addictive drugs or hormones and metabolites, which would facilitate efforts to probe their neural circuit mechanisms using a synthetic physiology approach. As these chemogenetic ion channels are specific for cocaine over natural rewards, they may also offer a route towards gene therapies for cocaine addiction.

摘要

化学反馈在生理学中无处不在,但在不干扰基础功能的情况下进行研究具有挑战性。一个例子是成瘾性药物,它们通过作用于大脑增加多巴胺信号传导,引发寻求药物和摄入药物的正反馈循环。然而,通过改变基础多巴胺来干扰这一过程也会对学习、运动、注意力和清醒产生不利影响。在此,受生理控制系统的启发,我们开发了一种高度选择性的合成生理学方法,通过在这个身体-大脑信号回路中安装一个依赖可卡因的反向信号过程来干扰成瘾的正反馈循环。我们利用蛋白质工程创建了对可卡因比对其他药物和内源性分子具有选择性的可卡因门控离子通道。在大鼠外侧缰核(一个通常被可卡因抑制的脑区)中表达兴奋性可卡因门控通道,可抑制可卡因自我给药,而不影响食物动机。这种人工可卡因激活的化学遗传学过程减少了伏隔核中可卡因诱导的细胞外多巴胺升高。我们的结果表明,可卡因化学遗传学是一种在存在可卡因时通过钳制多巴胺释放来对抗药物强化的选择性方法。未来,可以为其他成瘾性药物或激素及代谢产物开发化学遗传学受体,这将有助于利用合成生理学方法探索它们的神经回路机制。由于这些化学遗传学离子通道对可卡因比对自然奖赏具有特异性,它们也可能为可卡因成瘾的基因治疗提供一条途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验