VanBerlo Blake, Hoey Jesse, Wong Alexander, Arntfield Robert
David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Bioengineering (Basel). 2025 Aug 8;12(8):855. doi: 10.3390/bioengineering12080855.
Data augmentation is a central component of joint embedding self-supervised learning (SSL). Approaches that work for natural images may not always be effective in medical imaging tasks. This study systematically investigated the impact of data augmentation and preprocessing strategies in SSL for lung ultrasound. Three data augmentation pipelines were assessed: (1) a baseline pipeline commonly used across imaging domains, (2) a novel semantic-preserving pipeline designed for ultrasound, and (3) a distilled set of the most effective transformations from both pipelines. Pretrained models were evaluated on multiple classification tasks: B-line detection, pleural effusion detection, and COVID-19 classification. Experiments revealed that semantics-preserving data augmentation resulted in the greatest performance for COVID-19 classification-a diagnostic task requiring global image context. Cropping-based methods yielded the greatest performance on the B-line and pleural effusion object classification tasks, which require strong local pattern recognition. Lastly, semantics-preserving ultrasound image preprocessing resulted in increased downstream performance for multiple tasks. Guidance regarding data augmentation and preprocessing strategies was synthesized for developers working with SSL in ultrasound.
数据增强是联合嵌入自监督学习(SSL)的核心组成部分。适用于自然图像的方法在医学成像任务中可能并不总是有效。本研究系统地调查了数据增强和预处理策略在肺部超声自监督学习中的影响。评估了三种数据增强管道:(1)跨成像领域常用的基线管道,(2)为超声设计的新型语义保留管道,以及(3)从这两种管道中提炼出的一组最有效的变换。在多个分类任务上评估了预训练模型:B线检测、胸腔积液检测和新冠肺炎分类。实验表明,语义保留数据增强在新冠肺炎分类(一项需要全局图像上下文的诊断任务)中产生了最佳性能。基于裁剪的方法在B线和胸腔积液目标分类任务(需要强大的局部模式识别)上产生了最佳性能。最后,语义保留超声图像预处理提高了多个任务的下游性能。为在超声领域使用自监督学习的开发者综合了有关数据增强和预处理策略的指导。