Suppr超能文献

用于高效电化学水氧化的rGO-VO/WO水凝胶催化界面

Catalytic Interface of rGO-VO/WO Hydrogel for High-Performance Electrochemical Water Oxidation.

作者信息

Bhosale Mrunal, Amate Rutuja U, Morankar Pritam J, Jeon Chan-Wook

机构信息

School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 712-749, Republic of Korea.

出版信息

Gels. 2025 Aug 21;11(8):670. doi: 10.3390/gels11080670.

Abstract

The continuous increase in global energy demand necessitates the development of sustainable, clean, and highly efficient methods of energy generation. Electrochemical water splitting, comprising hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), represents a promising strategy but remains hindered by sluggish reaction kinetics and limited availability of highly active electrocatalysts especially under alkaline conditions. Addressing this challenge, we successfully synthesized a rGO-VO/WO (rG-VO/WO) hydrogel electrocatalyst through a facile hydrothermal approach. The prepared composite distinctly reveals an advantageous hierarchical microstructure characterized by VO nanoflakes uniformly distributed on the surface of rGO nanosheets, intricately integrated with WO nanorods. Evaluated in a 1.0 M KOH electrolyte, the optimized rG-VO/WO-2 catalyst demonstrates remarkable electrocatalytic performance towards OER, achieving a low overpotential of 265.8 mV and a reduced Tafel slope of 81.9 mV dec. Furthermore, the catalyst maintains robust stability with minimal performance degradation, exhibiting an overpotential of only 273.0 mV after 5000 cyclic stability tests. The superior catalytic activity and durability are attributed to the synergistic combination of enriched chemical composition, effective electron transfer, and abundant catalytic active sites inherent in the well-optimized rG-VO/WO-2 composite.

摘要

全球能源需求的持续增长使得开发可持续、清洁且高效的能源生产方法成为必要。包括析氢反应(HER)和析氧反应(OER)的电化学水分解是一种很有前景的策略,但仍然受到缓慢的反应动力学以及高活性电催化剂可用性有限的阻碍,尤其是在碱性条件下。为应对这一挑战,我们通过一种简便的水热法成功合成了一种rGO-VO/WO(rG-VO/WO)水凝胶电催化剂。所制备的复合材料明显呈现出一种有利的分级微观结构,其特征是VO纳米片均匀分布在rGO纳米片表面,并与WO纳米棒复杂地整合在一起。在1.0 M KOH电解液中进行评估时,优化后的rG-VO/WO-2催化剂对OER表现出卓越的电催化性能,实现了265.8 mV的低过电位和81.9 mV dec的降低的塔菲尔斜率。此外,该催化剂保持了强大的稳定性,性能降解最小,在5000次循环稳定性测试后仅表现出273.0 mV的过电位。优异的催化活性和耐久性归因于优化良好的rG-VO/WO-2复合材料中丰富的化学成分、有效的电子转移和大量催化活性位点的协同组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85ab/12386089/9206abec984e/gels-11-00670-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验