Suppr超能文献

对石油烃生物降解基因组结构及能力提升的见解。

Insights into the Genomic Architecture and Improvement of the Capabilities of for the Biodegradation of Petroleum Hydrocarbons.

作者信息

Zeng Yaning, Wang Mutian, Chang Xiaoyu, Wang Leilei, Fu Xiaowen, Huang Yujie, Song Fanyong, Ji Lei, Wang Jianing

机构信息

Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.

EnviroCORE, Dargan Research Centre, South East Technological University, Carlow Campus, R93 V960 Carlow, Ireland.

出版信息

Microorganisms. 2025 Aug 21;13(8):1953. doi: 10.3390/microorganisms13081953.

Abstract

Petroleum-contaminated terrestrial ecosystems require effective bioremediation strategies. In this study, genomic analysis revealed key biodegradation genes on the 21# chromosome: alkane hydroxylases (, , ) and aromatic ortho-cleavage pathway genes (). Phylogenetic and multiple sequence alignment analyses of the gene in strain 21# revealed the presence of signature motifs characteristic of Baeyer-Villiger monooxygenase. Functional annotation analysis demonstrated stronger phylogenetic affinity of this protein to previously characterized BVMOs than to hydroxylases. Therefore, it is suggested that the AlmA protein in 21# exhibits BVMO activity and participates in the subterminal oxidation pathway of alkane degradation. Wild-type 21# degraded both n-Octacosane (24.47%) and pyrene (34.03%). Engineered 21#-A3 showed significantly enhanced n-Octacosane degradation (28.68%). To validate AlmA function and assess impacts of exogenous gene integration, we expressed the gene from KJ-1 via pET-28a(+)- vector. Enzymatic assays demonstrated no activity toward long-chain alkanes but high activity for 2-decanone (0.39 U/mg) and 2-dodecanone (0.37 U/mg). Metabolite analysis confirmed recombinant AlmA functions through subterminal oxidation. This study establishes a foundational framework for advancing the optimization of petroleum-degrading bacteria. To engineer more efficient hydrocarbon-degrading strains, future research should integrate meta-cleavage pathways to expand their substrate utilization range for polycyclic aromatic hydrocarbons.

摘要

受石油污染的陆地生态系统需要有效的生物修复策略。在本研究中,基因组分析揭示了21#染色体上的关键生物降解基因:烷烃羟化酶(、、)和芳香族邻位裂解途径基因()。对21#菌株中基因的系统发育和多序列比对分析表明,存在拜耳-维利格单加氧酶特有的特征基序。功能注释分析表明,该蛋白与先前鉴定的BVMOs的系统发育亲和力比与羟化酶更强。因此,推测21#中的AlmA蛋白具有BVMO活性,并参与烷烃降解的亚末端氧化途径。野生型21#对正二十八烷(24.47%)和芘(34.03%)均有降解作用。工程菌21#-A3对正二十八烷的降解能力显著增强(28.68%)。为了验证AlmA的功能并评估外源基因整合的影响,我们通过pET-28a(+)-载体表达了KJ-1中的基因。酶活性测定表明,该酶对长链烷烃无活性,但对2-癸酮(0.39 U/mg)和2-十二烷酮(0.37 U/mg)具有高活性。代谢物分析证实重组AlmA通过亚末端氧化发挥功能。本研究为推进石油降解细菌的优化建立了基础框架。为了构建更高效的烃降解菌株,未来的研究应整合间位裂解途径,以扩大其对多环芳烃的底物利用范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ca5/12388405/a1469e080973/microorganisms-13-01953-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验