Reis Manuel J C S, Reis António J D
Engineering Departement/IEETA, Quinta de Prados, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal.
Escola de Engenharia, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal.
Sensors (Basel). 2025 Aug 10;25(16):4944. doi: 10.3390/s25164944.
Unmanned aerial vehicles (UAVs) increasingly demand robust onboard diagnostic frameworks to ensure safe operation under irregular telemetry and mission-critical conditions. This paper presents a real-time fault detection framework for unmanned aerial vehicles (UAVs), optimized for deployment on edge devices and designed to handle irregular, nonuniform telemetry. The system reconstructs raw sensor data using compactly supported B-spline interpolation, ensuring stable recovery of flight dynamics under jitter, dropouts, and asynchronous sampling. A lightweight hybrid anomaly detection module-combining a Long Short-Term Memory (LSTM) autoencoder with an Isolation Forest-analyzes both temporal patterns and statistical deviations across reconstructed signals. The full pipeline operates entirely onboard embedded platforms such as the Raspberry Pi 4 and NVIDIA Jetson Nano, with end-to-end inference latency under 50 milliseconds. Experiments using real PX4 UAV flight logs and synthetic fault injection demonstrate a detection accuracy of 93.6% and strong resilience to telemetry disruptions. These results support the feasibility of autonomous, sensor-based health monitoring in UAV systems and broader real-time cyber-physical applications.
无人机(UAV)对强大的机载诊断框架的需求日益增加,以确保在不规则遥测和关键任务条件下的安全运行。本文提出了一种针对无人机(UAV)的实时故障检测框架,该框架针对在边缘设备上的部署进行了优化,并设计用于处理不规则、不均匀的遥测数据。该系统使用紧支B样条插值法重建原始传感器数据,确保在抖动、数据丢失和异步采样情况下飞行动力学的稳定恢复。一个轻量级的混合异常检测模块——结合了长短期记忆(LSTM)自动编码器和孤立森林——分析重建信号中的时间模式和统计偏差。整个流程完全在诸如树莓派4和英伟达Jetson Nano等机载嵌入式平台上运行,端到端推理延迟在50毫秒以下。使用真实的PX4无人机飞行日志和合成故障注入进行的实验表明,检测准确率为93.6%,并且对遥测干扰具有很强的恢复能力。这些结果支持了无人机系统中基于传感器的自主健康监测以及更广泛的实时网络物理应用的可行性。