Gao Fei, Yang Lan, Chen Yizhe, Xu Hongyang, Yang Ting
Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China.
Emerg Med Int. 2025 Aug 19;2025:4949299. doi: 10.1155/emmi/4949299. eCollection 2025.
To determine whether early dynamic changes in the systemic immune-inflammation index (SII) improve prediction of acute kidney injury (AKI) and 1-year mortality in critically ill patients. In this retrospective cohort study of 17,491 ICU admissions from the MIMIC-IV database, we calculated three SII metrics within the first 24 h of ICU stay: the 24-h SII_slope and the extreme values (SII_min, SII_max). LASSO-selected multivariable logistic regression was used to predict AKI, and Cox proportional hazards models assessed associations with 1-year mortality. A prognostic nomogram integrating SOFA score, APS III score, and log-transformed SII_min and SII_max was developed using the rms package in R. Model performance was evaluated by AUC of ROC curves, calibration plots, decision curve analysis (DCA), and Kaplan-Meier survival curves stratified by SII quartiles. The LASSO-based logistic model identified a steeper 24-h SII_slope as an independent predictor of AKI (AUC 0.739; patients who developed AKI had significantly higher predicted risk than those who did not). Higher SII_min and SII_max were each associated with reduced 1-year survival (log-rank =0.047 for SII_min quartiles). The nomogram for 1-year mortality demonstrated excellent discrimination (AUC 0.823) and good calibration, and DCA confirmed its clinical utility. Early dynamic changes in SII-especially the 24-h slope-and the first-day SII extremes independently predict AKI and long-term mortality in ICU patients. A nomogram combining SII metrics with standard severity scores may facilitate individualized risk stratification in critical care.
为了确定全身免疫炎症指数(SII)的早期动态变化是否能改善对危重症患者急性肾损伤(AKI)和1年死亡率的预测。在这项对MIMIC-IV数据库中17491例入住重症监护病房(ICU)患者的回顾性队列研究中,我们计算了ICU住院第1个24小时内的三个SII指标:24小时SII斜率以及极值(SII最小值、SII最大值)。采用LASSO选择的多变量逻辑回归来预测AKI,并用Cox比例风险模型评估与1年死亡率的关联。使用R语言中的rms包开发了一个整合序贯器官衰竭评估(SOFA)评分、急性生理与慢性健康状况评分系统III(APS III)评分以及经对数转换的SII最小值和SII最大值的预后列线图。通过ROC曲线的AUC、校准图、决策曲线分析(DCA)以及按SII四分位数分层的Kaplan-Meier生存曲线来评估模型性能。基于LASSO的逻辑模型确定更陡的24小时SII斜率是AKI的独立预测因素(AUC为0.739;发生AKI的患者预测风险显著高于未发生AKI的患者)。较高的SII最小值和SII最大值均与1年生存率降低相关(SII最小值四分位数的对数秩检验P = 0.047)。1年死亡率的列线图显示出良好的区分度(AUC为0.823)和良好的校准度,DCA证实了其临床实用性。SII的早期动态变化——尤其是24小时斜率——以及首日SII极值可独立预测ICU患者的AKI和长期死亡率。将SII指标与标准严重程度评分相结合的列线图可能有助于重症监护中的个体化风险分层。