Suppr超能文献

甲状腺乳头状癌中的放射转录组学补充了当前的非侵入性风险分层系统。

Radiotranscriptomics in papillary thyroid carcinoma complement current noninvasive risk stratification system.

作者信息

Seo Dong Hyun, Lee Eunjung, Yoon Jung Hyun, Park Eun Gyeong, Park Sunmi, Lee Hwa Young, Ho Joon, Lee Cho Rok, Han Kyunghwa, Lee Jandee, Kwak Jin Young, Jo Young Suk

机构信息

Department of Internal Medicine, Open NBI Convergence Technology Research Laboratory, Yonsei University College of Medicine, Seoul 03722, South Korea.

School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul 03722, South Korea.

出版信息

Sci Adv. 2025 Aug 29;11(35):eadv6697. doi: 10.1126/sciadv.adv6697.

Abstract

Papillary thyroid carcinoma (PTC) generally has a favorable prognosis; however, overtreatment persists because of the lack of reliable noninvasive risk stratification tools. This study developed a radiomics-based approach to enhance the preoperative assessment of PTC. Imaging features from 255 patients were analyzed, and three tumor clusters were identified via unsupervised clustering, with one cluster (Cluster 2) displaying favorable clinical and molecular profiles. A radiomics score was constructed and validated internally and externally, achieving high diagnostic accuracy (area under the curve of 0.98) and independently predicting benign features such as a lower N stage and favorable treatment responses. Transcriptomic analysis revealed immune activation and survival-related gene expression in Cluster 2. The model demonstrated robust performance in stratifying patients for active surveillance and may complement current diagnostic frameworks, offering a precise, noninvasive tool to guide clinical decision-making.

摘要

甲状腺乳头状癌(PTC)通常预后良好;然而,由于缺乏可靠的非侵入性风险分层工具,过度治疗的情况仍然存在。本研究开发了一种基于放射组学的方法来加强对PTC的术前评估。分析了255例患者的影像特征,并通过无监督聚类识别出三个肿瘤簇,其中一个簇(簇2)显示出良好的临床和分子特征。构建了一个放射组学评分并在内部和外部进行了验证,该评分具有较高的诊断准确性(曲线下面积为0.98),并能独立预测诸如较低的N分期和良好的治疗反应等良性特征。转录组分析揭示了簇2中的免疫激活和生存相关基因表达。该模型在对患者进行主动监测分层方面表现出强大的性能,可能会补充当前的诊断框架,提供一种精确的非侵入性工具来指导临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/440c/12396316/81258be6b8eb/sciadv.adv6697-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验