Alvarez-Fernandez Alberto, Hernández Guiomar, Maiz Jon
Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 Donostia - San Sebastián, Spain.
Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden.
JACS Au. 2025 Jul 7;5(8):3701-3715. doi: 10.1021/jacsau.5c00442. eCollection 2025 Aug 25.
Solid polymer electrolytes (SPEs) hold great promise for next-generation battery technologies due to their inherent safety and mechanical stability. However, widely used poly-(ethylene oxide) (PEO)-based electrolytes face significant challenges, including high crystallinity, low ionic conductivity at ambient temperatures, and a narrow electrochemical stability window. Overcoming these limitations requires the development of novel polymer matrices alongside the refinement of advanced characterization methods that capture the fundamental dynamics of ion transport and polymer segmental mobility. In this Perspective, we review recent advancements in SPE design, focusing on innovative materials such as polytetrahydrofuran (PTHF) or poly-(trimethylene carbonate) (PTMC) as well as solid composite electrolytes. We also examine alternative synthetic strategies, including copolymerization, blending, and cross-linking, which aim to reduce crystallinity and enhance ion conduction. Importantly, we emphasize the urgent need for comprehensive experimental and computational characterization techniques. Progress in small-angle X-ray and neutron scattering, quasielastic neutron scattering, and in situ spectroscopy has provided critical insights into the complex interactions between ions and polymer chains. By integrating innovations in materials synthesis with state-of-the-art characterization approaches, this work outlines a forward-looking roadmap for the rational design of SPEs that can meet the demanding requirements of next-generation energy storage systems.
固态聚合物电解质(SPEs)因其固有的安全性和机械稳定性,在下一代电池技术方面具有巨大潜力。然而,广泛使用的基于聚环氧乙烷(PEO)的电解质面临重大挑战,包括高结晶度、室温下低离子电导率以及狭窄的电化学稳定窗口。克服这些限制需要开发新型聚合物基体,同时完善先进的表征方法,以捕捉离子传输和聚合物链段迁移的基本动力学。在这篇展望文章中,我们综述了固态聚合物电解质设计的最新进展,重点关注聚四氢呋喃(PTHF)或聚碳酸三亚甲基酯(PTMC)等创新材料以及固态复合电解质。我们还研究了旨在降低结晶度和提高离子传导率的替代合成策略,包括共聚、共混和交联。重要的是,我们强调迫切需要全面的实验和计算表征技术。小角X射线和中子散射、准弹性中子散射以及原位光谱学方面的进展,为深入了解离子与聚合物链之间的复杂相互作用提供了关键见解。通过将材料合成方面的创新与最先进的表征方法相结合,这项工作勾勒出了一个前瞻性路线图,用于合理设计能够满足下一代储能系统苛刻要求的固态聚合物电解质。