Suppr超能文献

YModPred:一种基于深度学习的用于酿酒酵母中多类型RNA修饰位点的可解释预测方法。

YModPred: an interpretable prediction method for multi-type RNA modification sites in S. cerevisiae based on deep learning.

作者信息

Ao Chunyan, Niu Mengting, Zou Quan, Yu Liang, Wang Yansu

机构信息

Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou Zhejiang , China.

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

BMC Biol. 2025 Aug 29;23(1):272. doi: 10.1186/s12915-025-02372-y.

Abstract

BACKGROUND

RNA post-transcriptional modifications involve the addition of chemical groups to RNA molecules or alterations to their local structure. These modifications can change RNA base pairing, affect thermal stability, and influence RNA folding, thereby impacting alternative splicing, translation, cellular localization, stability, and interactions with proteins and other molecules. Accurate prediction of RNA modification sites is essential for understanding modification mechanisms.

RESULTS

We propose a novel deep learning model, YModPred, which accurately predicts multiple types of RNA modification sites in S. cerevisiae based on RNA sequences. YModPred combines convolution and self-attention mechanisms to enhance the model's ability to capture global sequence information and improve local feature learning. The model can predict multi-type RNA modification sites. Comparative analysis against benchmark models demonstrates that YModPred outperforms existing state-of-the-art methods in predicting various RNA modification types. Additionally, the model's prediction performance is further validated through visualization and motif analysis.

CONCLUSIONS

YModPred is a deep learning-based model that effectively captures sequence features and dependencies, enabling accurate prediction of multi-type RNA modification sites in S. cerevisiae. We believe it will facilitate further research into the mechanisms of RNA modifications.

摘要

背景

RNA转录后修饰涉及向RNA分子添加化学基团或改变其局部结构。这些修饰可改变RNA碱基配对、影响热稳定性并影响RNA折叠,从而影响可变剪接、翻译、细胞定位、稳定性以及与蛋白质和其他分子的相互作用。准确预测RNA修饰位点对于理解修饰机制至关重要。

结果

我们提出了一种新型深度学习模型YModPred,它基于RNA序列准确预测酿酒酵母中的多种类型RNA修饰位点。YModPred结合了卷积和自注意力机制,以增强模型捕获全局序列信息的能力并改善局部特征学习。该模型可以预测多类型RNA修饰位点。与基准模型的比较分析表明,YModPred在预测各种RNA修饰类型方面优于现有的最先进方法。此外,通过可视化和基序分析进一步验证了模型的预测性能。

结论

YModPred是一种基于深度学习的模型,能够有效捕获序列特征和依赖性,从而准确预测酿酒酵母中的多类型RNA修饰位点。我们相信它将促进对RNA修饰机制的进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验