Lin Yi, Li Mengyao, Luo Zijin, Meng Yanan, Zong Yan, Ren Hongyu, Yu Xiaolu, Tan Xiaoqiong, Liu Fan, Wei Tuo, Cheng Qiang
Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.
State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Nat Mater. 2025 Sep 1. doi: 10.1038/s41563-025-02320-9.
Lipid nanoparticles for mRNA delivery and gene editing have the potential to transform the current therapeutic landscape. Nonetheless, a major bottleneck using this technology is the difficulty in achieving cell- and tissue-specific delivery and avoiding liver accumulation. Here we report the rational design of peptide ionizable lipids to assemble lipid nanoparticles with organ-selective mRNA delivery. Structure-activity and structure-selectivity relationship analyses enable us to obtain a general and predictable strategy for peptide ionizable lipid design. By incorporating artificial ionizable and natural amino acids and/or functional molecules into peptide ionizable lipids, we create lipid nanoparticles with tissue-specific targeting, including the lungs, liver, spleen, thymus and bone. In particular, lipid nanoparticles containing peptide lipids targeting the liver show comparable efficacy and safety compared with FDA-approved formulations. Furthermore, lipid nanoparticles with peptide lipids achieve the efficient co-delivery of PEmax mRNA and engineered prime editing guide RNA for prime editing of the liver and lungs. Overall, our platform offers a predictable methodology for the rational design of tissue-targeting lipid nanoparticles that might aid the development of improved mRNA-based gene editing therapeutics.
用于mRNA递送和基因编辑的脂质纳米颗粒有潜力改变当前的治疗格局。尽管如此,使用这项技术的一个主要瓶颈是难以实现细胞和组织特异性递送并避免肝脏蓄积。在此,我们报告了肽可电离脂质的合理设计,以组装具有器官选择性mRNA递送功能的脂质纳米颗粒。结构-活性和结构-选择性关系分析使我们能够获得一种通用且可预测的肽可电离脂质设计策略。通过将人工可电离氨基酸和天然氨基酸及/或功能分子纳入肽可电离脂质中,我们制备出了具有组织特异性靶向功能的脂质纳米颗粒,包括肺部、肝脏、脾脏、胸腺和骨骼。特别地,含有靶向肝脏的肽脂质的脂质纳米颗粒与FDA批准的制剂相比,显示出相当的疗效和安全性。此外,含有肽脂质的脂质纳米颗粒实现了PEmax mRNA和工程化的引导编辑向导RNA的高效共递送,用于肝脏和肺部的引导编辑。总体而言,我们的平台为合理设计组织靶向脂质纳米颗粒提供了一种可预测的方法,这可能有助于改进基于mRNA的基因编辑疗法的开发。