Suppr超能文献

动物行为中的波动景观与重尾现象。

Fluctuating landscapes and heavy tails in animal behavior.

作者信息

Costa Antonio Carlos, Sridhar Gautam, Wyart Claire, Vergassola Massimo

机构信息

Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.

Sorbonne University, Paris Brain Institute (ICM), Inserm U1127, CNRS UMR 7225, Paris, France.

出版信息

PRX Life. 2024 Apr-Jun;2(2). doi: 10.1103/prxlife.2.023001. Epub 2024 Apr 2.

Abstract

Animal behavior is shaped by a myriad of mechanisms acting on a wide range of scales, which hampers quantitative reasoning and the identification of general principles. Here, we combine data analysis and theory to investigate the relationship between behavioral plasticity and heavy-tailed statistics often observed in animal behavior. Specifically, we first leverage high-resolution recordings of locomotion to show that stochastic transitions among long-lived behaviors exhibit heavy-tailed first passage time distributions and correlation functions. Such heavy tails can be explained by slow adaptation of behavior over time. This particular result motivates our second step of introducing a general model where we separate fast dynamics on a quasi-stationary multi-well potential, from non-ergodic, slowly varying modes. We then show that heavy tails generically emerge in such a model, and we provide a theoretical derivation of the resulting functional form, which can become a power law with exponents that depend on the strength of the fluctuations. Finally, we provide direct support for the generality of our findings by testing them in a mutant where adaptation is suppressed and heavy tails thus disappear, and recordings of larval zebrafish swimming behavior where heavy tails are again prevalent.

摘要

动物行为受到多种作用于广泛尺度的机制的塑造,这妨碍了定量推理以及一般原理的识别。在此,我们结合数据分析和理论来研究行为可塑性与动物行为中经常观察到的重尾统计之间的关系。具体而言,我们首先利用高分辨率的运动记录来表明,长寿行为之间的随机转变呈现出重尾首次通过时间分布和相关函数。这种重尾现象可以通过行为随时间的缓慢适应来解释。这一特殊结果促使我们进行第二步,即引入一个通用模型,在该模型中,我们将准静态多阱势上的快速动力学与非遍历、缓慢变化的模式区分开来。然后我们表明,在这样的模型中重尾通常会出现,并且我们提供了所得函数形式的理论推导,其可以成为一个幂律,指数取决于波动的强度。最后,我们通过在一个适应被抑制且重尾因此消失的突变体中进行测试,以及在幼虫斑马鱼游泳行为记录中重尾再次普遍存在的情况下进行测试,为我们研究结果的普遍性提供了直接支持。

引用本文的文献

本文引用的文献

1
A Markovian dynamics for behavior across scales.
Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2318805121. doi: 10.1073/pnas.2318805121. Epub 2024 Jul 31.
2
Neural criticality from effective latent variables.
Elife. 2024 Mar 12;12:RP89337. doi: 10.7554/eLife.89337.
3
Long Timescales, Individual Differences, and Scale Invariance in Animal Behavior.
Phys Rev Lett. 2024 Jan 26;132(4):048401. doi: 10.1103/PhysRevLett.132.048401.
4
Maximally predictive states: From partial observations to long timescales.
Chaos. 2023 Feb;33(2):023136. doi: 10.1063/5.0129398.
6
How critical is brain criticality?
Trends Neurosci. 2022 Nov;45(11):820-837. doi: 10.1016/j.tins.2022.08.007. Epub 2022 Sep 9.
7
The emergence and influence of internal states.
Neuron. 2022 Aug 17;110(16):2545-2570. doi: 10.1016/j.neuron.2022.04.030. Epub 2022 May 27.
8
Measuring the repertoire of age-related behavioral changes in Drosophila melanogaster.
PLoS Comput Biol. 2022 Feb 24;18(2):e1009867. doi: 10.1371/journal.pcbi.1009867. eCollection 2022 Feb.
9
Nonlinear stochastic modelling with Langevin regression.
Proc Math Phys Eng Sci. 2021 Jun;477(2250):20210092. doi: 10.1098/rspa.2021.0092. Epub 2021 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验