Suppr超能文献

血清胃蛋白酶原作为胃胃肠道间质瘤(GIST)的生物标志物

Serum Pepsinogen as a Biomarker of Gastrointestinal Stromal Tumors (GIST) in Stomach.

作者信息

Gao Zhiying, Luo Laizhi, Han Yueting, Sun Yan, Huang Yonghong, Li Shixia, Chen Xingyun, Yang Huimin, Peng Zhijuan, Wang Xinyi, Zhao Wei, Wu Xi, Wu Huan, Bai Jing, Sun Wu, Zhou Likun, Ba Yi

机构信息

Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.

Guangzhou Medical University, Guangzhou, China.

出版信息

Cancer Med. 2025 Sep;14(17):e71186. doi: 10.1002/cam4.71186.

Abstract

BACKGROUND

Gastric GISTs (GG) are significant mesenchymal tumors. No biomarker has been identified for GG detection. We first observed mucosal atrophy surrounding GG tumors, leading to the hypothesis that localized atrophy may alter serum pepsinogen (PG) levels. Therefore, we developed a machine learning (ML) model incorporating serum PG levels and clinical features to predict GG and differentiate it from gastric cancer (GC).

METHODS

We retrospectively analyzed GG and GC patients with tested PG levels before medical intervention. Seven ML algorithms were assessed, and feature importance was determined using SHapley Additive exPlanations (SHAP). Gastric atrophy was assessed histologically using the updated Sydney System.

RESULTS

After screening 562 GG and 1090 GC patients, 100 GG and 174 GC samples were included. The multilayer perceptron (MLP) model achieved the highest AUC. The final MLP model, which included 4 features-gender, PGI levels, PGI/PGII ratio, and CEA-predicted GG with an AUC of 0.854. Considering clinical practice and the feature importance identified by the final MLP model, we established a Positive-Gastric-GIST-PG-CEA criterion (PGI < 70 ng/mL, PGI/PGII ratio ≥ 3.0, and CEA ≤ 5 μg/L) referring to the cutoff values revealed by the ROC curve. The Positive-Gastric-GIST-PG-CEA displayed exceptional performance in predicting GG (AUC = 0.772, accuracy = 0.748, specificity = 0.787, sensitivity = 0.680), with performance comparable to the final MLP model (ΔAUC = 0.082, p > 0.05). The contributions of PGI levels, PGI/PGII ratio, and CEA in the Positive-Gastric-GIST-PG-CEA model performance were 0.33, 0.15, and 0.13 based on SHAP analysis. Histopathological evaluation of gastric mucosal atrophy in 50 GG patients revealed peri-tumoral glandular atrophy in 29 cases (58%).

CONCLUSIONS

The Positive-Gastric-GIST-PG-CEA criterion is valuable for detecting GG and distinguishing it from GC. Integrating our criteria into existing PG tests could help in GG detection without additional economic expense.

摘要

背景

胃胃肠道间质瘤(GG)是重要的间充质肿瘤。尚未发现用于检测GG的生物标志物。我们首先观察到GG肿瘤周围的黏膜萎缩,从而提出局部萎缩可能会改变血清胃蛋白酶原(PG)水平的假设。因此,我们开发了一种结合血清PG水平和临床特征的机器学习(ML)模型,以预测GG并将其与胃癌(GC)区分开来。

方法

我们回顾性分析了在医疗干预前检测过PG水平的GG和GC患者。评估了七种ML算法,并使用夏普利值加法解释(SHAP)确定特征重要性。使用更新的悉尼系统对胃萎缩进行组织学评估。

结果

在筛选了562例GG患者和1090例GC患者后,纳入了100份GG样本和174份GC样本。多层感知器(MLP)模型的曲线下面积(AUC)最高。最终的MLP模型包括性别、PGI水平、PGI/PGII比值和癌胚抗原(CEA)这4个特征,预测GG的AUC为0.854。考虑到临床实践以及最终MLP模型确定的特征重要性,我们根据ROC曲线显示的临界值建立了阳性胃间质瘤-PG-CEA标准(PGI<70 ng/mL,PGI/PGII比值≥3.0,且CEA≤5μg/L)。阳性胃间质瘤-PG-CEA在预测GG方面表现出色(AUC = 0.772,准确率 = 0.748,特异性 = 0.787,灵敏度 = 0.680),其性能与最终的MLP模型相当(ΔAUC = 0.082,p>0.05)。基于SHAP分析,PGI水平、PGI/PGII比值和CEA在阳性胃间质瘤-PG-CEA模型性能中的贡献分别为0.33、0.15和0.13。对50例GG患者的胃黏膜萎缩进行组织病理学评估发现,29例(58%)存在肿瘤周围腺体萎缩。

结论

阳性胃间质瘤-PG-CEA标准对于检测GG并将其与GC区分开来具有重要价值。将我们的标准整合到现有的PG检测中,有助于在不增加额外经济成本的情况下检测GG。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2a/12406084/7880ec76c91d/CAM4-14-e71186-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验