Suppr超能文献

黄原胶-铁体系:用于生物医学工程应用的天然、机械可调、生物活性和磁响应水凝胶

Xanthan Gum-Iron System: Natural, Mechanically Tunable, Bioactive, and Magnetic-Responsive Hydrogels for Biomedical Engineering Applications.

作者信息

Decarli Monize C, Babilotte Joanna, Chen Wen, Kappesz Julian, Ten Brink Tim, Dechant Lisanne, Kalogeropoulou Maria, Tomasina Clarissa, Custódio Catarina A, Mano João F, Moroni Lorenzo

机构信息

MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.

Department of Biomaterials & Biomedical Technology, University Medical Center Groningen/University of Groningen, A. Deusinglaan 1, AV 9713 Groningen, The Netherlands.

出版信息

ACS Appl Mater Interfaces. 2025 Sep 17;17(37):51588-51604. doi: 10.1021/acsami.5c08442. Epub 2025 Sep 3.

Abstract

Xanthan gum (XG) has performed far better than other polysaccharides for industrial purposes, e.g., food, pharmaceutical, and cosmetic applications, due to its outstanding thickening effect, pseudoplastic rheological properties, and non-toxicity. However, there is no crosslinking strategy available for non-modified XG that allows its sole use within cells for biomedical engineering applications. Here, we established this crosslinking strategy while processing it via additive manufacturing techniques. The suitability of divalent (Ca, Mg, and Fe) and trivalent (Al and Fe) ions was evaluated by an in situ rheological assessment. Fe demonstrated a high affinity to XG by forming a stable crosslinking effect, and the baseline XG-Fe hydrogel exhibited outstanding printability and high culture stability (60 days). Although XG-Fe demonstrated high biocompatibility for hMSCs with sustained cytocompatible iron release, these cell-laden constructs are inert. Envisioning biological functionality, we blended human methacryloyl platelet lysates (hPLMA) with XG-Fe and either used inert XG-Fe or bioactive cell-adhesive XG-Fe-PLMA, resulting in a 10-fold increase in strength compared to non-crosslinked XG. Remarkably, whether inert or bioactive, hydrogels proved to be mechanically tunable (from ∼3 to 203 kPa), ideal for tissue engineering applications. Later, we expanded the XG-Fe role to a delivery system using magnetic nanoparticles (MNPs), and magnetically responsive scaffolds were obtained (XG-Fe-MNP). Finally, to explore the convergence of 3D printing and melt electrowriting (MEW), polycaprolactone (PCL) was included to obtain hybrid scaffolds (XG-PLMA-PCL). Our findings present a novel XG-Fe hydrogel with remarkable versatility as a natural, mechanically tunable, bioactive, and magnetic- responsive system for sole or hybrid use. This unusual set of capabilities meets the current demand for developing tailored hydrogels for complex biomedical engineering applications.

摘要

黄原胶(XG)由于其出色的增稠效果、假塑性流变特性和无毒特性,在工业用途(如食品、制药和化妆品应用)方面的表现远优于其他多糖。然而,对于未改性的XG,尚无交联策略可使其单独用于生物医学工程应用的细胞内。在此,我们在通过增材制造技术对其进行加工的过程中建立了这种交联策略。通过原位流变学评估来评估二价离子(钙、镁和铁)和三价离子(铝和铁)的适用性。铁通过形成稳定的交联效应表现出对XG的高亲和力,并且基线XG-Fe水凝胶表现出出色的可打印性和高培养稳定性(60天)。尽管XG-Fe对人间充质干细胞(hMSCs)表现出高生物相容性并伴有持续的细胞相容性铁释放,但这些负载细胞的构建体是惰性的。为了设想生物功能,我们将人甲基丙烯酰化血小板裂解物(hPLMA)与XG-Fe混合,并使用惰性的XG-Fe或具有生物活性的细胞粘附性XG-Fe-PLMA,与未交联的XG相比,强度提高了10倍。值得注意的是,无论惰性还是生物活性,水凝胶都被证明是机械可调的(从约3至203千帕),非常适合组织工程应用。后来,我们将XG-Fe的作用扩展到使用磁性纳米颗粒(MNP)的递送系统,并获得了磁响应支架(XG-Fe-MNP)。最后,为了探索3D打印和熔体静电纺丝(MEW)的融合,加入聚己内酯(PCL)以获得混合支架(XG-PLMA-PCL)。我们的研究结果展示了一种新型的XG-Fe水凝胶,具有显著的多功能性,可作为天然、机械可调、生物活性和磁响应系统单独使用或混合使用。这种独特的功能组合满足了当前为复杂生物医学工程应用开发定制水凝胶的需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验