Suppr超能文献

通过贝叶斯高分辨率人口估计解决公共卫生数据缺口:以刚果民主共和国东开赛省为例

Tackling public health data gaps through Bayesian high-resolution population estimation: A case study of Kasaï-Oriental, Democratic Republic of the Congo.

作者信息

Boo Gianluca, Darin Edith, Chamberlain Heather R, Hosner Roland, Akilimali Pierre K, Kazadi Henri Marie, Nnanatu Chibuzor C, Lázár Attila N, Tatem Andrew J

机构信息

WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, United Kingdom.

Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.

出版信息

PLOS Glob Public Health. 2025 Sep 4;5(9):e0005072. doi: 10.1371/journal.pgph.0005072. eCollection 2025.

Abstract

Most low- and middle-income countries face significant public health challenges, exacerbated by the lack of reliable demographic data supporting effective planning and intervention. In such data-scarce settings, statistical models combining geolocated survey data with geospatial datasets enable the estimation of population counts at high spatial resolution in the absence of dependable demographic data sources. This study introduces a Bayesian model jointly estimating building and population counts, combining geolocated survey data and gridded geospatial datasets. The model provides population estimates for the Kasaï-Oriental province, Democratic Republic of the Congo (DRC), at a spatial resolution of approximately one hectare. Posterior estimates are aggregated across health zones and health areas to offer probabilistic insights into their respective populations. The model exhibits a -0.28 bias, 0.47 inaccuracy, and 0.95 imprecision using scaled residuals, with robust 95% credible intervals. The estimated population of Kasaï-Oriental for 2024 is approximately 4.1 million, with a credible range of 3.4 to 4.8 million. Aggregations by health zones and health areas reveal significant variations in population estimates and uncertainty levels, particularly between the provincial capital, Mbuji-Mayi and the rural hinterland. High-resolution Bayesian population estimates allow flexible aggregation across spatial units while providing probabilistic insights into model uncertainty. These estimates offer a unique resource for the public health community working in Kasaï-Oriental, for instance, in support of a better-informed allocation of vaccines to different operational boundaries based on the upper bound of the 95% credible intervals.

摘要

大多数低收入和中等收入国家面临重大的公共卫生挑战,而缺乏支持有效规划和干预的可靠人口数据则使这些挑战更加严峻。在这种数据匮乏的环境中,将地理位置调查数据与地理空间数据集相结合的统计模型能够在缺乏可靠人口数据源的情况下,以高空间分辨率估算人口数量。本研究引入了一种贝叶斯模型,该模型结合地理位置调查数据和网格化地理空间数据集,联合估算建筑物数量和人口数量。该模型以约一公顷的空间分辨率提供了刚果民主共和国(DRC)东开赛省的人口估计数。后验估计值在各卫生区和卫生区域进行汇总,以便对其各自的人口情况提供概率性见解。使用缩放残差时,该模型的偏差为-0.28,不准确度为0.47,不精确率为0.95,并具有稳健的95%可信区间。2024年东开赛省的估计人口约为410万,可信区间为340万至480万。按卫生区和卫生区域进行汇总后发现,人口估计数和不确定性水平存在显著差异,特别是在省会姆布吉-马伊和农村腹地之间。高分辨率贝叶斯人口估计数允许在空间单元之间进行灵活汇总,同时提供有关模型不确定性的概率性见解。这些估计数为在东开赛省工作的公共卫生界提供了一种独特的资源,例如,可根据95%可信区间的上限,为在不同业务边界更明智地分配疫苗提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9704/12410768/0d575e7d74f8/pgph.0005072.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验