Suppr超能文献

组学洞察高丛蓝莓和蔓越莓作物农业生态系统对蜜蜂健康和生理的影响。

Omics Insights Into the Effects of Highbush Blueberry and Cranberry Crop Agroecosystems on Honey Bee Health and Physiology.

作者信息

Zhong Huan, Shi Yuming, Kozlova Aleksandra, Moravcova Renata, Rogalski Jason C, Jamieson Aidan, Lansing Lance, Moon Kyung-Mee, Yuan Xiaojing, Gregoris Amanda S, Higo Heather, Common Julia, Conflitti Ida M, Pepinelli Mateus, Tran Lan, Cunningham Morgan, Jabbari Hosna, Bukhari Syed Abbas, French Sarah K, Polo Rodrigo Ortega, Hoover Shelley E, Pernal Stephen F, Giovenazzo Pierre, Guarna M Marta, Zayed Amro, Foster Leonard J

机构信息

Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.

National Research University Higher School of Economics, Moscow, Russian Federation.

出版信息

Proteomics. 2025 Sep 6:e70033. doi: 10.1002/pmic.70033.

Abstract

Honey bees (Apis mellifera) are vital pollinators in fruit-producing agroecosystems like highbush blueberry (HBB) and cranberry (CRA). However, their health is threatened by multiple interacting stressors, including pesticides, pathogens, and nutritional changes. We tested the hypothesis that distinct agricultural ecosystems-with different combinations of agrochemical exposure, pathogen loads, and floral resources-elicit ecosystem-specific, tissue-level molecular responses in honey bees. We conducted an integrated multi-omics analysis using RNA-sequencing (RNA-seq), proteomics, and gut microbiome profiling across three key tissue types (head, abdomen, and gut) of honey bees collected from two agroecosystems over two field seasons. Quantification was performed for pesticide residues, pathogen loads (Nosema spp., Varroa destructor, and multiple viruses), and gut microbiota. Weighted gene co-expression network analysis (WGCNA) revealed tissue-specific protein modules with ecosystem-associated patterns, which differed from RNA co-expression networks. Microbiome composition also varied, with key genera like Gilliamella, Snodgrassella, and Bartonella correlating with metabolic modules. These findings underscore the complex, environment-dependent impacts of agroecosystem conditions on bee health. Our study provides a system-level understanding of how combined pesticide, pathogen, and parasitic stressors, mediated by diet and microbiome, shape molecular phenotypes in honey bees-informing strategies for pollinator protection in managed landscapes. SUMMARY: This study provides a comprehensive multi-omics analysis of honey bees foraging in blueberry and cranberry agroecosystems, offering novel insights into the molecular mechanisms underlying pollinator health in managed crop environments. By integrating transcriptomic, proteomic, and microbiome profiling across key tissues-head, abdomen, and gut-we reveal how environmental stressors, including pesticide exposure, pathogen infections, and parasitic infestations (e.g., Varroa destructor), differentially impact bee physiology and microbiome composition. Our findings highlight tissue-specific responses to these stressors, with distinct metabolic pathway alterations observed in each tissue. Proteomic and transcriptomic analyses uncovered dysregulated pathways linked to oxidative phosphorylation and protein synthesis, while microbiome analysis revealed crop-dependent shifts in gut bacterial communities, suggesting potential roles in pesticide detoxification and immune modulation. Notably, we identified key molecular biomarkers associated with stress adaptation, which may serve as early indicators of colony health deterioration. This research underscores the need for a system-level approach to understanding pollinator stress in agricultural landscapes. By elucidating the interactions between diet, pesticide residues, pathogen loads, and molecular stress responses, our study provides a foundation for targeted conservation strategies aimed at mitigating environmental risks and improving pollination sustainability in agroecosystems.

摘要

蜜蜂(西方蜜蜂)是高丛蓝莓(HBB)和蔓越莓(CRA)等水果生产农业生态系统中的重要传粉者。然而,它们的健康受到多种相互作用的压力源威胁,包括农药、病原体和营养变化。我们测试了这样一个假设:不同的农业生态系统——具有不同的农用化学品暴露、病原体负荷和花卉资源组合——会在蜜蜂中引发特定于生态系统的组织水平分子反应。我们在两个田间季节,对从两个农业生态系统收集的蜜蜂的三种关键组织类型(头部、腹部和肠道)进行了RNA测序(RNA-seq)、蛋白质组学和肠道微生物组分析的综合多组学分析。对农药残留、病原体负荷(微孢子虫属、狄斯瓦螨和多种病毒)和肠道微生物群进行了定量分析。加权基因共表达网络分析(WGCNA)揭示了具有与生态系统相关模式的组织特异性蛋白质模块,这与RNA共表达网络不同。微生物组组成也有所不同,像吉氏菌属、斯诺德格拉斯菌属和巴尔通体属等关键属与代谢模块相关。这些发现强调了农业生态系统条件对蜜蜂健康的复杂、环境依赖性影响。我们的研究提供了一个系统层面的理解,即由饮食和微生物组介导的农药、病原体和寄生压力源的组合如何塑造蜜蜂的分子表型,为管理景观中的传粉者保护策略提供了信息。总结:本研究对在蓝莓和蔓越莓农业生态系统中觅食的蜜蜂进行了全面的多组学分析,为管理作物环境中传粉者健康的分子机制提供了新的见解。通过整合关键组织——头部、腹部和肠道——的转录组学、蛋白质组学和微生物组分析,我们揭示了包括农药暴露、病原体感染和寄生侵扰(如狄斯瓦螨)在内的环境压力源如何不同地影响蜜蜂生理和微生物组组成。我们的发现突出了对这些压力源的组织特异性反应,在每个组织中观察到了不同的代谢途径改变。蛋白质组学和转录组学分析发现了与氧化磷酸化和蛋白质合成相关的失调途径,而微生物组分析揭示了肠道细菌群落的作物依赖性变化,表明在农药解毒和免疫调节中可能发挥作用。值得注意的是,我们确定了与应激适应相关的关键分子生物标志物,这可能作为蜂群健康恶化的早期指标。这项研究强调了需要一种系统层面的方法来理解农业景观中的传粉者压力。通过阐明饮食、农药残留、病原体负荷和分子应激反应之间的相互作用,我们的研究为旨在减轻环境风险和提高农业生态系统授粉可持续性的针对性保护策略奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验