Nicholas Makayla, Helman Tessa, Lyon Brock, Naghipour Saba, Ybanez Trissha, Ingles Joshua T, Kim Chulkyu, Stapelberg Nicolas J C, Peart Jason N, Headrick John P, du Toit Eugene F
School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia.
Centre for Healthy Brain Ageing (CHeBA), School of Clinical Medicine, University of NSW, Sydney, New South Wales, Australia.
Compr Physiol. 2025 Oct;15(5):e70045. doi: 10.1002/cph4.70045.
Mechanisms underlying cardiovascular, affective, and metabolic (CAM) multimorbidity are incompletely defined. We assessed how two risk factors-chronic stress (CS) and a Western diet (WD)-interact to influence cardiovascular function, resilience, adaptability, and allostatic load (AL); explore pathway involvement; and examine relationships with behavioral, metabolic, and systemic AL. Male C57Bl/6 mice (8 weeks old, n = 64) consumed a control (CD) or WD (12%-65%-23% or 32%-57%-11% calories from fat-carbohydrate-protein) for 17 weeks, with half subjected to 2 h daily restraint stress over the final 2 weeks (CD + CS and WD + CS). The WD induced a pre-diabetic state (increased weight, hyperinsulinemia, insulin-resistance, and hyperleptinemia) and anhedonia, while CS reduced body weight and leptin levels and was anxiogenic. The cardiovascular system was particularly stress sensitive: the WD worsened resilience (vulnerability to ischemia-reperfusion; I-R), while CS increased cardiac automaticity, reduced contractility and relaxation, worsened postischemic inflammation (TNF-α) and inhibited adaptive resilience (efficacy of ischemic preconditioning; PC). Proteomics identified mitochondrial function, innate immunity, and xenobiotic metabolism as prominently modified processes. Regarding allostatic loading: comorbid CS and WD feeding were necessary to increase cardiovascular AL and additively increased behavioral AL; the WD (not CS) increased metabolic, neuroendocrine-immune, and systemic AL. Summarizing: (i) distinct changes arise with CS (disrupted cardiac function, inflammation, adaptation; weight loss; anxiogenesis) versus a WD (reduced cardiac resilience; prediabetes; anhedonia); (ii) comorbid WD and CS additively worsen cardiovascular and behavioral AL; and (iii) mitochondrial and innate defense processes may underlie cardiac effects of diet and stress. Data support positive diet-stress interactions that particularly increase cardiovascular and affective vulnerability.
心血管、情感和代谢(CAM)共病的潜在机制尚未完全明确。我们评估了两种风险因素——慢性应激(CS)和西式饮食(WD)——如何相互作用以影响心血管功能、恢复力、适应性和应激负荷(AL);探索相关途径的参与情况;并研究与行为、代谢和全身AL的关系。雄性C57Bl/6小鼠(8周龄,n = 64)食用对照饮食(CD)或WD(脂肪-碳水化合物-蛋白质热量分别为12%-65%-23%或32%-57%-11%)17周,其中一半在最后2周每天接受2小时的束缚应激(CD + CS和WD + CS)。WD导致了糖尿病前期状态(体重增加、高胰岛素血症、胰岛素抵抗和高瘦素血症)以及快感缺失,而CS降低了体重和瘦素水平,并具有致焦虑作用。心血管系统对压力特别敏感:WD会降低恢复力(对缺血再灌注的易感性;I-R),而CS会增加心脏自律性,降低收缩性和舒张性,加重缺血后炎症(TNF-α)并抑制适应性恢复力(缺血预处理的效果;PC)。蛋白质组学确定线粒体功能、先天免疫和外源性物质代谢为显著改变的过程。关于应激负荷:CS和WD共同作用是增加心血管AL并累加增加行为AL所必需的;WD(而非CS)增加了代谢、神经内分泌免疫和全身AL。总结如下:(i)CS(心脏功能紊乱、炎症、适应性改变;体重减轻;焦虑症)与WD(心脏恢复力降低;糖尿病前期;快感缺失)会产生不同的变化;(ii)WD和CS共同作用会加重心血管和行为AL;(iii)线粒体和先天防御过程可能是饮食和压力对心脏产生影响的基础。数据支持饮食-压力的正向相互作用,这种相互作用尤其会增加心血管和情感方面的易感性。