Tang Junyan, Chen En, Yan Pengbo, Huang Jiming, Xue Ping, Tang Mi, Kong Lingjun, Wang Zhengbang
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
School of Material and Chemical Engineering, Tongren University, Tongren 554300, China.
ACS Appl Mater Interfaces. 2025 Sep 17;17(37):52137-52145. doi: 10.1021/acsami.5c11310. Epub 2025 Sep 8.
Developing solid electrolytes with high ionic conductivity, a high voltage window, low flammability, and excellent interface compatibilities with both the anode and cathode for lithium-metal batteries is still a great challenge but highly desirable. Herein, we achieve this target through an in situ copolymerization of vinyl ethylene carbonate (VEC) together with acrylonitrile (AN) under fitting ratios inside a porous polyacrylonitrile (PAN) fiber membrane doped with flame-retardant decabromodiphenyl ethane (DBDPE) molecules. The received fiber-reinforced polycarbonate-based composite electrolyte with an ultrathin thickness of 13 μm exhibits good internal interfacial compatibility because of the same AN structure and superior flame-retardant performance due to the doped DBDPE molecules. The dual lithium salt strategy facilitates the formation of a stable interface layer on the lithium anode surface. The electrolyte also exhibits high thermal stability, a high ion transference number (0.75), a wide voltage window (up to 4.9 V), and high ionic conductivity (6.3 × 10 S cm at room temperature). As a result, its Li//Li symmetric cells could maintain stable cycling for over 2500 h, and its LiFePO//Li full cells also exhibit an initial capacity of 135 mAh g and a retention of 82.9% after 300 cycles at 2 C and 25 °C. In addition, the full cells with either high voltage or high loading cathodes both deliver excellent rate performance and cycling stability. All these results confirm its superior properties, excellent stability, and high safety for potential application in high-energy-density solid lithium metal batteries.
开发具有高离子电导率、高电压窗口、低可燃性以及与锂金属电池的阳极和阴极都具有优异界面相容性的固体电解质仍然是一个巨大的挑战,但却非常令人期待。在此,我们通过在掺杂有阻燃剂十溴二苯醚(DBDPE)分子的多孔聚丙烯腈(PAN)纤维膜内,使碳酸亚乙烯酯(VEC)与丙烯腈(AN)以合适的比例进行原位共聚来实现这一目标。所得到的厚度仅为13μm的纤维增强聚碳酸酯基复合电解质,由于具有相同的AN结构而表现出良好的内部界面相容性,并且由于掺杂的DBDPE分子而具有优异的阻燃性能。双锂盐策略有助于在锂阳极表面形成稳定的界面层。该电解质还具有高热稳定性、高离子迁移数(0.75)、宽电压窗口(高达4.9V)以及高离子电导率(室温下为6.3×10 S cm)。因此,其Li//Li对称电池能够在超过2500小时内保持稳定循环,其LiFePO//Li全电池在2C和25°C下300次循环后也表现出135 mAh g的初始容量和82.9%的容量保持率。此外,具有高电压或高负载阴极的全电池都具有出色的倍率性能和循环稳定性。所有这些结果证实了其优异的性能、出色的稳定性以及在高能量密度固体锂金属电池中潜在应用的高安全性。