Suppr超能文献

使用自然语言处理和Transformer模型分析大学生的抑郁症:对职业和教育咨询的启示。

Analyzing Depression in College Students Using NLP and Transformer Models: Implications for Career and Educational Counseling.

作者信息

Wan Qiuxia, Pan Yue, Zakeri Sonia

机构信息

Chengdu Sport University, Chengdu, China.

Department of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.

出版信息

Brain Behav. 2025 Sep;15(9):e70828. doi: 10.1002/brb3.70828.

Abstract

PURPOSE

Depression among college students is a growing concern that negatively affects academic performance, emotional well-being, and career planning. Existing diagnostic methods are often slow, subjective, and inaccessible, underscoring the need for automated systems that can detect depressive symptoms through digital behavior, particularly on social media platforms.

METHOD

This study proposes a novel natural language processing (NLP) framework that combines a RoBERTa-based Transformer with gated recurrent unit (GRU) layers and multimodal embeddings. The Transformer captures nuanced language patterns, while the GRU layers account for the sequence of user posts over time. Multimodal embeddings-including behavioral, temporal, and contextual metadata-enhance the model's ability to interpret subtle emotional cues in social media posts.

FINDINGS

The model was evaluated on real-world datasets from Twitter and Reddit, achieving an accuracy of 90.18% in classifying depressive versus non-depressive posts. It also demonstrated consistently high performance across both simple and complex sentence types. Statistical comparison with several baseline models confirmed the superiority of the proposed method, particularly over traditional deep learning architectures.

CONCLUSION

By enabling real-time detection of depressive signals in social media content, the proposed framework can serve as a practical tool in academic and career counseling. It supports early identification of at-risk students and facilitates timely interventions, contributing to improved student well-being, retention, and long-term success.

摘要

目的

大学生抑郁症问题日益受到关注,它会对学业成绩、情绪健康和职业规划产生负面影响。现有的诊断方法往往耗时、主观且难以实施,这凸显了开发自动化系统的必要性,该系统能够通过数字行为,特别是在社交媒体平台上的行为来检测抑郁症状。

方法

本研究提出了一种新颖的自然语言处理(NLP)框架,该框架将基于RoBERTa的Transformer与门控循环单元(GRU)层及多模态嵌入相结合。Transformer捕捉细微的语言模式,而GRU层则考虑用户帖子随时间的序列。多模态嵌入(包括行为、时间和上下文元数据)增强了模型解读社交媒体帖子中微妙情感线索的能力。

研究结果

该模型在来自Twitter和Reddit的真实世界数据集上进行了评估,在区分抑郁帖子和非抑郁帖子时准确率达到了90.18%。它在简单和复杂句子类型上均表现出持续的高性能。与几个基线模型的统计比较证实了所提方法的优越性,特别是相对于传统深度学习架构。

结论

通过能够实时检测社交媒体内容中的抑郁信号,所提框架可作为学术和职业咨询中的实用工具。它有助于早期识别有风险的学生并促进及时干预,从而有助于改善学生的幸福感、留校率和长期成功率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验