Suppr超能文献

占空比记录对被动声学监测中蝙蝠活动测量的影响。

Influence of duty-cycle recording on measuring bat activity in passive acoustic monitoring.

作者信息

Krishna Aditya, Lee Wu-Jung

机构信息

Applied Physics Laboratory, University of Washington, Seattle, Washington 98105, USA.

Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, USA.

出版信息

J Acoust Soc Am. 2025 Sep 1;158(3):1892-1903. doi: 10.1121/10.0039108.

Abstract

Echolocating bats provide vital ecosystem services and can be monitored effectively using passive acoustic monitoring (PAM) techniques. Duty-cycle subsampling is widely used to collect PAM data at regular ON/OFF cycles to circumvent battery and storage capacity constraints for long-term monitoring. However, the impact of duty-cycle subsampling and potential detector errors on estimating bat activity has not been systematically investigated for bats. Here, we simulate the influence of duty-cycle subsampling in measuring bat activity via three metrics-call rate, activity index (AI), and bout-time percentage (BTP)-using three months of continuous recordings spanning summer to fall in a temperate urban natural area. Our simulations show that subsampled bat activity estimates more accurately track true values when the listening ratio is high and the cycle length is low, when the true call activity is high, or when recorded calls have lower frequency content. Generally, among the three metrics, AI provides the best subsampling estimates and is robust against false negatives but sensitive to false positives, whereas BTP provides better temporal resolution compared to AI and is robust against both false positives and false negatives. Our results offer important insights into selecting sampling parameters and measurement metrics for long-term bat PAM.

摘要

回声定位蝙蝠提供重要的生态系统服务,并且可以使用被动声学监测(PAM)技术进行有效监测。占空比子采样被广泛用于以规则的开/关周期收集PAM数据,以规避长期监测中的电池和存储容量限制。然而,对于蝙蝠而言,占空比子采样和潜在探测器误差对估计蝙蝠活动的影响尚未得到系统研究。在此,我们使用温带城市自然区域从夏季到秋季连续三个月的记录,通过三个指标——叫声率、活动指数(AI)和时段时间百分比(BTP),模拟占空比子采样在测量蝙蝠活动中的影响。我们的模拟表明,当监听比率高且周期长度低、真实叫声活动高或者记录的叫声频率含量较低时,子采样的蝙蝠活动估计能更准确地追踪真实值。一般来说,在这三个指标中,AI提供了最佳的子采样估计,对假阴性具有鲁棒性但对假阳性敏感,而与AI相比,BTP提供了更好的时间分辨率,并且对假阳性和假阴性都具有鲁棒性。我们的结果为长期蝙蝠PAM的采样参数和测量指标选择提供了重要见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验