Suppr超能文献

使用基于多能干细胞的微流控平台对人类视网膜神经节细胞轴突生长、发育和病理学进行建模。

Modeling human retinal ganglion cell axonal outgrowth, development, and pathology using pluripotent stem cell-based microfluidic platforms.

作者信息

Gomes Cátia, Huang Kang-Chieh, Lavekar Sailee S, Harkin Jade, Prosser Carson G, Fang Yue, Kalem Claire, Oblak Adrian, Zhang Chi, Meyer Jason S

机构信息

Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202.

Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202.

出版信息

Proc Natl Acad Sci U S A. 2025 Sep 16;122(37):e2423682122. doi: 10.1073/pnas.2423682122. Epub 2025 Sep 9.

Abstract

Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states. Human pluripotent stem cell (hPSC)-derived RGCs were seeded into microfluidic devices that allow physical separation of axons from the somatodendritic compartment, enabling precise study of each region. Initial experiments characterized axonal outgrowth and the specific segregation of axons and dendrites. We then examined compartment-specific phenotypes in RGCs carrying the OPTN(E50K) glaucoma mutation compared to isogenic controls, including differences in axonal growth and axonal transport efficiency, with OPTN-mutant RGCs showing reduced axon length and slower transport, hallmarks of neurodegeneration. Axonal RNA-seq analyses revealed transcriptomic alterations related to disease states, including specific transcriptomic changes along OPTN axons. To assess glial influences on axonal health, we developed models with astrocytes localized specifically to the proximal axonal compartment and modulated their disease states to simulate pathological conditions. Importantly, the induction of diseased astrocytes solely along proximal axons triggered compartment-specific neurodegenerative changes in RGCs. Collectively, this platform represents a successful recapitulation of the spatially distinct features of hPSC-derived RGCs under both healthy and disease conditions, offering a physiologically relevant, human-specific in vitro system to study neuronal development, axon-glia interactions, and mechanisms underlying neurodegeneration.

摘要

视网膜神经节细胞(RGCs)是高度分隔化的神经元,其长轴突是眼睛与大脑之间的唯一连接。在损伤和疾病状态下,RGCs的退化以类似的分隔方式发生,轴突和胞体树突区域有不同的分子和细胞反应。本研究的目的是建立一个基于微流控的平台,以研究健康和疾病状态下RGCs的分隔情况。将人多能干细胞(hPSC)衍生的RGCs接种到微流控装置中,该装置可使轴突与胞体树突部分物理分离,从而能够精确研究每个区域。初步实验对轴突生长以及轴突和树突的特异性分离进行了表征。然后,我们比较了携带OPTN(E50K)青光眼突变的RGCs与同基因对照中的特定区域表型,包括轴突生长和轴突运输效率的差异,OPTN突变型RGCs表现出轴突长度缩短和运输速度减慢,这是神经退行性变的特征。轴突RNA测序分析揭示了与疾病状态相关的转录组改变,包括沿OPTN轴突的特定转录组变化。为了评估神经胶质细胞对轴突健康的影响,我们开发了模型,使星形胶质细胞特异性定位于近端轴突区域,并调节其疾病状态以模拟病理状况。重要的是,仅在近端轴突处诱导患病的星形胶质细胞会引发RGCs中特定区域的神经退行性变化。总的来说,该平台成功再现了hPSC衍生的RGCs在健康和疾病条件下的空间独特特征,提供了一个生理相关的、人类特异性的体外系统,用于研究神经元发育、轴突-神经胶质细胞相互作用以及神经退行性变的潜在机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e23/12452894/cfd2466273e7/pnas.2423682122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验