Naderi Mahdi, Jahanian-Najafabadi Amir
Department of Cognitive Sciences, Faculty of Psychology and Educational Sciences, Shiraz University, Shiraz, Iran.
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
BMC Psychiatry. 2025 Sep 9;25(1):854. doi: 10.1186/s12888-025-07296-z.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders. Advances in electroencephalography (EEG) analysis using machine learning hold promise for the development of OCD-specific biological markers. This systematic review aims to evaluate studies that classify individuals with OCD from other groups based on EEG data. Following PRISMA guidelines, we searched the Web of Science, Scopus, PubMed, and IEEE databases through February 2025; of 42 screened studies, 11 met inclusion criteria for final analysis. Data were extracted across four domains: general information, population characteristics, EEG features, and machine learning features. Results revealed extensive heterogeneity in study populations, associated symptoms, EEG preprocessing methods, validation strategies, and reporting of model accuracy, underscoring the need for harmonized standards. Notably, only a few studies provided statistical interpretation of their models. None of reviewed studies employed modern interpretability techniques such as SHAP or LIME methods that, beyond reducing "black-box" opacity, can inform optimal electrode placement for neurofeedback or transcranial electrical stimulation. Many studies were constrained by cultural limitations, small sample sizes and lack of demographic information e.g., age, gender, medication. This work represents the first systematic review of EEG-ML classification studies in OCD and emphasizes the urgent need for methodological standardization in this emerging field.
强迫症(OCD)是一种慢性致残性疾病,影响着全球约3.5%的人口,其诊断平均延迟7.1年,或常常与其他精神疾病相混淆。利用机器学习进行脑电图(EEG)分析的进展为开发强迫症特异性生物标志物带来了希望。本系统综述旨在评估基于EEG数据将强迫症患者与其他群体进行分类的研究。按照PRISMA指南,我们检索了截至2025年2月的Web of Science、Scopus、PubMed和IEEE数据库;在筛选的42项研究中,11项符合最终分析的纳入标准。数据从四个领域提取:一般信息、人群特征、EEG特征和机器学习特征。结果显示,研究人群、相关症状、EEG预处理方法、验证策略以及模型准确性报告存在广泛的异质性,突出了统一标准的必要性。值得注意的是,只有少数研究对其模型进行了统计解释。综述的研究均未采用现代可解释性技术,如SHAP或LIME方法,这些方法除了能减少“黑箱”不透明度外,还能为神经反馈或经颅电刺激的最佳电极放置提供信息。许多研究受到文化限制、样本量小以及缺乏人口统计学信息(如年龄、性别、用药情况)的制约。这项工作是对强迫症中EEG-机器学习分类研究的首次系统综述,并强调了这一新兴领域中方法标准化的迫切需求。