Suppr超能文献

MotAB定子的进化与结构多样性:对细菌鞭毛运动起源的见解

Evolution and structural diversity of the MotAB stator: insights into the origins of bacterial flagellar motility.

作者信息

Puente-Lelievre Caroline, Ridone Pietro, Douglas Jordan, Amritkar Kaustubh, Kaçar Betül, Baker Matthew A B, Matzke Nicholas J

机构信息

School of Biological Sciences, University of Auckland, Auckland, New Zealand.

Centre for Computational Evolution, University of Auckland, Auckland, New Zealand.

出版信息

mBio. 2025 Sep 10:e0382424. doi: 10.1128/mbio.03824-24.

Abstract

The rotation of the bacterial flagellum is powered by the MotAB stator complex, which converts ion flux into torque. Despite its central role in flagellar function, the evolutionary origin and structural diversity of this system remain poorly understood. Here, we present the first comprehensive phylogenetic and structural characterization of MotAB and its closest non-flagellar homologs. We gathered homologs from 205 genomes across 27 bacterial phyla, estimated phylogenies, inferred ancestral sequences, and predicted structures for both extant and inferred ancestral proteins using AlphaFold. Our analyses characterized two structurally distinct groups: flagellar ion transporters (FIT) and generic ion transporters (GIT). FIT proteins are structurally conserved, including a characteristic square fold domain and a torque-generating interface (TGI). We further delineate FIT proteins into two subgroups, TGI4 and TGI5s, based on the presence of 4 or 5 short helices within the TGI region. TGI5 motors, such as those found in the K12 system, are primarily restricted to Pseudomonadota, whereas TGI4 motors, such as the Na-powered polar motors of (PomAB), are distributed across a broader range of bacterial lineages. In contrast, GIT proteins exhibit substantial structural and functional heterogeneity and lack features associated with flagellar motility. Nevertheless, a conserved interaction between the A and B subunits is retained across FIT and GIT proteins, with their corresponding genes typically adjacent to operons. Functional assays in show that FIT-specific structural elements are indispensable for flagellar motility. Our results suggest that the flagellar stator motor complex evolved once from a common ancestral ion transporter, acquiring unique structural traits to support motility. This work provides a robust framework for understanding the evolutionary diversification of stator complexes and their mechanistic specialization.IMPORTANCEFlagellar motility allows bacteria to propel themselves and direct movement according to environmental conditions. It plays a key role in bacterial pathogenicity and survival. We investigated the molecular and structural diversity of the stator motor proteins that provide the ion motive force to power flagellar rotation. This study uses a comparative approach that integrates phylogenetics, 3D protein structure, motility assays, and ancestral state reconstruction (ASR) to provide insights into the structural mechanisms that first powered the flagellar motor. We provide the first phylogenetic and structural characterization and classification of MotAB and relatives.

摘要

细菌鞭毛的旋转由MotAB定子复合体提供动力,该复合体将离子通量转化为扭矩。尽管它在鞭毛功能中起着核心作用,但该系统的进化起源和结构多样性仍知之甚少。在这里,我们首次对MotAB及其最接近的非鞭毛同源物进行了全面的系统发育和结构表征。我们从27个细菌门的205个基因组中收集了同源物,估计了系统发育,推断了祖先序列,并使用AlphaFold预测了现存和推断的祖先蛋白质的结构。我们的分析确定了两个结构不同的组:鞭毛离子转运蛋白(FIT)和通用离子转运蛋白(GIT)。FIT蛋白在结构上是保守的,包括一个特征性的方形折叠结构域和一个扭矩产生界面(TGI)。我们根据TGI区域内4个或5个短螺旋的存在,将FIT蛋白进一步分为两个亚组,即TGI4和TGI5s。TGI5马达,如在K12系统中发现的那些,主要局限于假单胞菌门,而TGI4马达,如(PomAB)的钠驱动极性马达,则分布在更广泛的细菌谱系中。相比之下,GIT蛋白表现出显著的结构和功能异质性,并且缺乏与鞭毛运动相关的特征。然而,FIT和GIT蛋白的A亚基和B亚基之间保留了保守的相互作用,它们相应的基因通常与操纵子相邻。在[具体实验对象]中的功能测定表明,FIT特异性结构元件对于鞭毛运动是必不可少的。我们的结果表明,鞭毛定子马达复合体曾经从一个共同的祖先离子转运蛋白进化而来,获得了独特的结构特征以支持运动。这项工作为理解定子复合体的进化多样化及其机制特化提供了一个有力的框架。

重要性

鞭毛运动使细菌能够根据环境条件推动自身并引导运动。它在细菌致病性和生存中起着关键作用。我们研究了为鞭毛旋转提供离子驱动力的定子马达蛋白的分子和结构多样性。本研究采用了一种比较方法,整合了系统发育学、三维蛋白质结构、运动测定和祖先状态重建(ASR),以深入了解最初为鞭毛马达提供动力的结构机制。我们首次对MotAB及其相关蛋白进行了系统发育和结构表征及分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验