Suppr超能文献

用于在电子病历中检测过敏反应的人工智能

Artificial intelligence for detecting anaphylaxis in electronic medical records.

作者信息

Ensina Luis Felipe, Machado Matheus Matos, Marques Joice B Machado, Dos Santos Monica Pugliese H, Lario Fábio Cerqueira, Araújo Chayanne Andrade, Oliveira Fabiana Andrade Nunes, Moreira Dilvan de Abreu

机构信息

Department of Allergy and Clinical Immunology, Hospital Sírio-Libanês, São Paulo, Brazil.

Department of Computer Sciences, University of São Paulo, São Carlos, Brazil.

出版信息

Asia Pac Allergy. 2025 Sep;15(3):153-158. doi: 10.5415/apallergy.0000000000000179. Epub 2025 Jan 8.

Abstract

BACKGROUND

Despite established criteria, diagnosing anaphylaxis remains challenging but critical for preventing future reactions. Fast-paced clinical settings, compounded by underrecording in electronic medical records (EMRs), increase the risk of dangerous re-exposures. Leveraging artificial intelligence through automated systems such as large language models (LLMs) offers a solution.

OBJECTIVE

This study aims to assess the efficacy of artificial intelligence, specifically LLMs, in autonomously identifying anaphylaxis diagnoses from EMR text to enhance patient safety and optimize care delivery.

METHODS

LLMs (GPT 3.5, 4, and 4 Turbo) analyzed 969 medical texts in Brazilian Portuguese, annotated as anaphylaxis-positive (48) or negative (921) by 3 expert physicians. A primary prompt simulated a general practitioner's role in reviewing medical narratives for anaphylaxis detection, with a secondary prompt incorporating World Allergy Organization (WAO) criteria. The experiments were conducted using 3 GPT configurations. The diagnostic suggestions of the LLM were compared to the physicians' diagnoses. Precision, sensitivity (recall), specificity, and accuracy values were calculated.

RESULTS

Using the primary prompt, GPT 4 Turbo detected anaphylaxis cases with 90.6% precision, 100% sensitivity, 99.5% specificity, 99.5% accuracy, and a Cohen kappa coefficient of 0.95. The inclusion of WAO criteria slightly improved the performance of older models (GPT 3.5 + 4 configuration). However, for GPT 4 Turbo, additional information did not enhance precision.

CONCLUSION

The results highlight the potential of artificial intelligence, particularly LLMs, to automate anaphylaxis diagnosis, support healthcare professionals, and improve patient safety and care.

摘要

背景

尽管有既定标准,但诊断过敏反应仍然具有挑战性,但对于预防未来的反应至关重要。快节奏的临床环境,再加上电子病历(EMR)记录不足,增加了危险的再次暴露风险。通过诸如大语言模型(LLM)等自动化系统利用人工智能提供了一种解决方案。

目的

本研究旨在评估人工智能,特别是大语言模型,从电子病历文本中自动识别过敏反应诊断的有效性,以提高患者安全性并优化护理服务。

方法

大语言模型(GPT 3.5、4和4 Turbo)分析了969篇巴西葡萄牙语的医学文本,由3名专家医生标注为过敏反应阳性(48篇)或阴性(921篇)。一个主要提示模拟全科医生在审查医学叙述以检测过敏反应时的角色,一个次要提示纳入了世界过敏组织(WAO)标准。实验使用3种GPT配置进行。将大语言模型的诊断建议与医生的诊断进行比较。计算了精确率、敏感度(召回率)、特异度和准确率值。

结果

使用主要提示,GPT 4 Turbo检测过敏反应病例的精确率为90.6%,敏感度为100%,特异度为99.5%,准确率为99.5%,科恩kappa系数为0.95。纳入WAO标准略微提高了旧模型(GPT 3.5 + 4配置)的性能。然而,对于GPT 4 Turbo,额外信息并未提高精确率。

结论

结果突出了人工智能,特别是大语言模型,在自动化过敏反应诊断、支持医疗保健专业人员以及提高患者安全性和护理方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac9a/12419321/163bd9608332/pa9-15-153-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验