Suppr超能文献

用于颈椎X线摄影的深度学习:椎间和神经孔距离的自动测量

Deep Learning for Cervical Spine Radiography: Automated Measurement of Intervertebral and Neural Foraminal Distances.

作者信息

Huang Ya-Yun, Wang Hong-Kai, Chi Tsun-Kuang, Liu Chao-Shin, Tsai Sung-Hsin, Liong Sze-Teng, Chen Tsung-Yi, Li Kuo-Chen, Tu Wei-Chen, Abu Patricia Angela R

机构信息

Program on Semiconductor Manufacturing Technology, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan City 701401, Taiwan.

Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan City 333423, Taiwan.

出版信息

Diagnostics (Basel). 2025 Aug 26;15(17):2162. doi: 10.3390/diagnostics15172162.

Abstract

The precise localization of cervical vertebrae in X-ray imaging was essential for effective diagnosis and treatment planning, particularly as the prevalence of cervical degenerative conditions increased with an aging population. Vertebrae from C2 to C7 were commonly affected by disorders such as ossification of the posterior longitudinal ligament (OPLL) and nerve compression caused by posterior osteophytes, necessitating thorough evaluation. However, manual annotation remained a major aspect of traditional clinical procedures, making it challenging to manage increasing patient volumes and large-scale medical imaging data. To address this issue, this study presented an automated approach for localizing cervical vertebrae and measuring neural foraminal distance. The proposed technique analyzed the neural foramen distance and intervertebral space using image enhancement to determine the degree of nerve compression. YOLOv8 was employed to detect and segment the cervical vertebrae. Moreover, by integrating automated cervical spine analysis with advanced imaging technologies, the system enabled rapid detection of abnormal intervertebral disc gaps, facilitating early identification of degenerative changes. According to the results, the system achieved a spine localization accuracy of 99.5%, representing an 11.7% improvement over existing approaches. Notably, it outperformed previous methods by 66.67% in recognizing the C7 vertebra, achieving a perfect 100% accuracy. Furthermore, the system significantly streamlined the diagnostic workflow by processing each X-ray image in just 17.9 milliseconds. This approach markedly improved overall diagnostic efficiency.

摘要

颈椎在X线成像中的精确定位对于有效的诊断和治疗规划至关重要,尤其是随着老年人口的增加,颈椎退行性疾病的患病率也在上升。C2至C7椎体通常受到诸如后纵韧带骨化(OPLL)和后骨赘引起的神经压迫等疾病的影响,因此需要进行全面评估。然而,手动标注仍然是传统临床程序的一个主要方面,这使得管理不断增加的患者数量和大规模医学影像数据具有挑战性。为了解决这个问题,本研究提出了一种用于定位颈椎和测量神经孔距离的自动化方法。所提出的技术利用图像增强分析神经孔距离和椎间隙,以确定神经压迫程度。采用YOLOv8来检测和分割颈椎。此外,通过将自动化颈椎分析与先进的成像技术相结合,该系统能够快速检测出异常的椎间盘间隙,便于早期识别退行性变化。根据结果,该系统实现了99.5%的脊柱定位准确率,比现有方法提高了11.7%。值得注意的是,在识别C7椎体方面,它比以前的方法高出66.67%,达到了完美的100%准确率。此外,该系统通过仅在17.9毫秒内处理每张X线图像,显著简化了诊断工作流程。这种方法显著提高了整体诊断效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97f7/12427634/416ed3569613/diagnostics-15-02162-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验