Kováč Miroslav, Gregová Katarína, Švorc Ĺubomíŕ́, Zažímal František, Homola Tomáš, Gemeiner Pavol
Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia.
ACS Omega. 2025 Aug 23;10(35):40435-40449. doi: 10.1021/acsomega.5c05879. eCollection 2025 Sep 9.
This study presents a rapid, environmentally friendly, and scalable activation method for 3D-printed poly-(lactic acid)/carbon black (PLA/CB) electrodes using atmospheric air plasma under ambient conditions. The goal was to optimize the plasma activation time and compare its efficiency with conventional activation techniques using ,-dimethylformamide (DMF) and sodium hydroxide (NaOH). Surface morphology, chemical composition, wettability, and electrochemical performance were systematically evaluated through scanning electron microscopy (SEM), Raman spectroscopy, XPS, contact angle measurements, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Plasma treatment, as short as 5 s, effectively removed the PLA matrix from the electrode surface, enhanced surface roughness, hydrophilicity, and exposure of conductive carbon black particles, leading to increased electrochemical performance. Compared to chemical activation, 40 s of plasma activation yielded comparable performance with significantly shorter processing times (vs NaOH) and without hazardous solvents (such as DMF). Finally, the activated electrodes were successfully applied in the development, optimization, and validation of a novel electrochemical protocol for the determination of the antihypertensive drug amlodipine, revealing high sensitivity, a low limit of detection of 0.09 μM, precision (RSD of 6.6%), and recovery (97.1 and 105.4%) in pharmaceutical formulations. The findings demonstrate the promising potential of air plasma activation as a sustainable and efficient approach for preparing 3D-printed electrodes for analytical and sensing applications.
本研究提出了一种在环境条件下使用大气空气等离子体对3D打印聚乳酸/炭黑(PLA/CB)电极进行快速、环保且可扩展的活化方法。目标是优化等离子体活化时间,并将其效率与使用N,N-二甲基甲酰胺(DMF)和氢氧化钠(NaOH)的传统活化技术进行比较。通过扫描电子显微镜(SEM)、拉曼光谱、X射线光电子能谱(XPS)、接触角测量、循环伏安法(CV)和电化学阻抗谱(EIS)系统地评估了表面形态、化学成分、润湿性和电化学性能。短至5秒的等离子体处理有效地从电极表面去除了PLA基体,提高了表面粗糙度、亲水性以及导电炭黑颗粒的暴露程度,从而提高了电化学性能。与化学活化相比,40秒的等离子体活化产生了相当的性能,处理时间明显更短(与NaOH相比)且无需使用有害溶剂(如DMF)。最后,活化电极成功应用于一种新型电化学方法的开发、优化和验证,该方法用于测定抗高血压药物氨氯地平,在药物制剂中显示出高灵敏度、0.09 μM的低检测限、精密度(相对标准偏差为6.6%)和回收率(97.1%和105.4%)。这些发现证明了空气等离子体活化作为一种可持续且高效的方法在制备用于分析和传感应用的3D打印电极方面具有广阔的潜力。