Suppr超能文献

全脑血液动力学可预测人类睡眠和清醒状态下的脑电图神经节律。

Brainwide hemodynamics predict EEG neural rhythms across sleep and wakefulness in humans.

作者信息

Jacob Leandro P L, Bailes Sydney M, Williams Stephanie D, Stringer Carsen, Lewis Laura D

机构信息

Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2025 Sep 19;21(9):e1013497. doi: 10.1371/journal.pcbi.1013497. eCollection 2025 Sep.

Abstract

The brain exhibits rich oscillatory dynamics that play critical roles in vigilance and cognition, such as the neural rhythms that define sleep. These rhythms continuously fluctuate, signaling major changes in vigilance, but the widespread brain dynamics underlying these oscillations are difficult to investigate. Using simultaneous EEG and fast fMRI in humans who fell asleep inside the scanner, we developed a machine learning approach to investigate which fMRI regions and networks predict fluctuations in neural rhythms. We demonstrated that the rise and fall of alpha (8-12 Hz) and delta (1-4 Hz) power-two canonical EEG bands critically involved with cognition and vigilance-can be predicted from fMRI data in subjects that were not present in the training set. This approach also identified predictive information in individual brain regions across the cortex and subcortex. Finally, we developed an approach to identify shared and unique predictive information, and found that information about alpha rhythms was highly separable in two networks linked to arousal and visual systems. Conversely, delta rhythms were diffusely represented on a large spatial scale primarily across the cortex. These results demonstrate that EEG rhythms can be predicted from fMRI data, identify large-scale network patterns that underlie alpha and delta rhythms, and establish a novel framework for investigating multimodal brain dynamics.

摘要

大脑呈现出丰富的振荡动力学,其在警觉性和认知中发挥着关键作用,例如定义睡眠的神经节律。这些节律持续波动,标志着警觉性的重大变化,但这些振荡背后广泛的脑动力学难以研究。我们对在脑部扫描仪中入睡的人类同时使用脑电图(EEG)和快速功能磁共振成像(fMRI),开发了一种机器学习方法来研究哪些fMRI区域和网络能够预测神经节律的波动。我们证明,从训练集中不存在的受试者的fMRI数据可以预测α(8 - 12赫兹)和δ(1 - 4赫兹)功率的上升和下降——这两个与认知和警觉性密切相关的典型脑电波段。这种方法还在整个皮层和皮层下的各个脑区中识别出了预测信息。最后,我们开发了一种方法来识别共享和独特的预测信息,发现关于α节律的信息在与觉醒和视觉系统相关的两个网络中高度可分离。相反,δ节律主要在整个皮层的大空间尺度上呈弥散性分布。这些结果表明,可以从fMRI数据预测脑电节律,识别α和δ节律背后的大规模网络模式,并建立一个研究多模态脑动力学的新框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e73/12459787/953a76503755/pcbi.1013497.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验