Chen Meiling, Zheng Xiaomei, Du Peng, Ni Xiaomeng, Li Zhimin, Zheng Ping, Sun Jibin
School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; University of Chinese Academy of Sciences, Beijing 100049 China.
Bioresour Technol. 2026 Jan;439:133350. doi: 10.1016/j.biortech.2025.133350. Epub 2025 Sep 17.
Aspergillus niger is a prominent industrial filamentous fungus widely utilized in industrial-scale biomanufacturing of organic acids and enzymes, where mycelial morphology critically influences fermentation performance. FlbE, a key developmental regulator in filamentous fungi, is traditionally known for primarily controlling the differentiation of vegetative hyphae into conidiophores. Intriguingly, deletion of flbE in the protein-producing strain MA234.1 resulted in normal conidiation, indicating potential strain-specific functions beyond its canonical developmental role. To explore this, we employed CRISPR/Cas9-mediated in situ Tet-on promoter replacement to construct titratable flbE expression mutants in two genetically distinct strains: the protein-producing MA70.15 and the citric acid-producing D353.8. Phenotypic analyses revealed that flbE coordinated conidiation, hyphal growth, and pellet morphology in a strain-dependent manner. Notably, flbE repression in D353.8 led to a significant reduction in mycelial pellet size and a 22.7% increase in citric acid production. Transcriptomic profiling under titratable flbE induction revealed the activation of developmental regulators (flbB, flbD) and central metabolic genes, while genes involved in cell wall remodeling (exsG, eglB), glucose uptake (mstH), citrate export (cexA), and extracellular hydrolases (glaA, amyA, pepA, lipA) were downregulated, accompanied by the morphological shift and metabolic enhancement. These findings unveiled that FlbE plays a pleiotropic and strain-specific role in integrating fungal development with primary metabolism. Moreover, this study identifies flbE as a promising genetic target for morphology engineering and metabolic optimization in A. niger, offering a new strategy for enhancing citric acid biomanufacturing.
黑曲霉是一种重要的工业丝状真菌,广泛应用于有机酸和酶的工业规模生物制造中,其菌丝形态对发酵性能有至关重要的影响。FlbE是丝状真菌中的关键发育调节因子,传统上主要因其控制营养菌丝分化为分生孢子梗而闻名。有趣的是,在蛋白质生产菌株MA234.1中缺失flbE导致分生孢子正常形成,这表明其除了在经典发育作用之外还具有潜在的菌株特异性功能。为了探究这一点,我们采用CRISPR/Cas9介导的原位Tet-on启动子替换技术,在两种遗传背景不同的菌株中构建了可滴定flbE表达突变体:蛋白质生产菌株MA70.15和柠檬酸生产菌株D353.8。表型分析表明,flbE以菌株依赖的方式协调分生孢子形成、菌丝生长和菌球形态。值得注意的是,在D353.8中抑制flbE导致菌丝球大小显著减小,柠檬酸产量增加22.7%。在可滴定flbE诱导下的转录组分析显示,发育调节因子(flbB、flbD)和中心代谢基因被激活,而参与细胞壁重塑(exsG、eglB)、葡萄糖摄取(mstH)、柠檬酸盐输出(cexA)和细胞外水解酶(glaA、amyA、pepA、lipA)的基因被下调,同时伴随着形态转变和代谢增强。这些发现揭示了FlbE在整合真菌发育与初级代谢方面发挥着多效性和菌株特异性作用。此外,本研究确定flbE是黑曲霉形态工程和代谢优化的一个有前景的遗传靶点,为提高柠檬酸生物制造提供了一种新策略。