Suppr超能文献

利用二维光催化剂中的原子尺度缺陷工程:用于带隙调节和电荷转移优化的纳米复合结构的协同整合。

Harnessing atomic-scale defect engineering in 2D photocatalysts: synergistic integration of nanocomposite architectures for bandgap tuning and charge transfer optimization.

作者信息

Pasindu Viraj, Munaweera Imalka

机构信息

Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka

出版信息

RSC Adv. 2025 Sep 18;15(41):34191-34210. doi: 10.1039/d5ra05074j. eCollection 2025 Sep 17.

Abstract

The urgent global need for sustainable energy and effective environmental remediation has propelled photocatalysis to the forefront of materials research. Two-dimensional (2D) photocatalysts, empowered by atomic-scale defect engineering, have revolutionized this field by enabling precise bandgap tuning, enhanced charge separation, and the creation of abundant active sites. This review systematically explores the synergistic integration of defect-rich 2D materials into advanced nanocomposite architectures such as Type-II, Z-scheme, and Schottky heterojunctions, highlighting how these strategies overcome the intrinsic limitations of pristine 2D systems. We detail the roles of vacancies, dopants, edge sites, and grain boundaries in modulating the electronic structure and reactivity and examine how rational composite design further amplifies these effects through optimized interfacial charge transfer and band alignment. Comparative analyses of recent open-access studies underscore the superior photocatalytic efficiencies achieved by heterojunction-engineered 2D photocatalysts and membranes in applications ranging from solar fuel generation (H evolution and CO reduction) to environmental remediation (dye degradation and heavy metal removal) and emerging fields such as NOx abatement and green organic synthesis. This review also addresses key challenges, including the scalable and green synthesis of defect-engineered materials and their long-term stability, toxicity, and integration with circular-economy principles. We conclude by outlining a roadmap for their commercialization and envisioning future directions, including bioinspired systems and space applications. This synthesis establishes atomic-scale defect engineering, in concert with nanocomposite design, as a paradigm-shifting approach for next-generation photocatalytic technologies with transformative real-world impact.

摘要

全球对可持续能源和有效环境修复的迫切需求推动光催化成为材料研究的前沿领域。二维(2D)光催化剂通过原子尺度的缺陷工程得到助力,通过实现精确的带隙调谐、增强的电荷分离以及大量活性位点的产生,彻底改变了这一领域。本综述系统地探讨了富含缺陷的二维材料与先进纳米复合结构(如II型、Z型和肖特基异质结)的协同整合,强调了这些策略如何克服原始二维系统的固有局限性。我们详细阐述了空位、掺杂剂、边缘位点和晶界在调节电子结构和反应活性方面的作用,并研究了合理的复合设计如何通过优化界面电荷转移和能带排列进一步放大这些效应。对近期开放获取研究的比较分析强调了通过异质结工程的二维光催化剂和膜在从太阳能燃料生成(析氢和CO还原)到环境修复(染料降解和重金属去除)以及新兴领域(如氮氧化物减排和绿色有机合成)等应用中实现的卓越光催化效率。本综述还讨论了关键挑战,包括缺陷工程材料的可扩展和绿色合成及其长期稳定性、毒性以及与循环经济原则的整合。我们通过概述其商业化路线图并展望未来方向(包括仿生系统和空间应用)来得出结论。本综述确立了原子尺度的缺陷工程与纳米复合设计相结合,作为一种具有变革性现实世界影响的下一代光催化技术的范式转变方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e259/12445102/6350103d81a4/d5ra05074j-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验