Suppr超能文献

噬菌体λ;对噬菌体P2呈溶原性的细菌的流产感染。

Bacteriophage lambda; abortive infection of bacteria lysogenic for phage P2.

作者信息

Lindahl G, Sironi G, Bialy H, Calendar R

出版信息

Proc Natl Acad Sci U S A. 1970 Jul;66(3):587-94. doi: 10.1073/pnas.66.3.587.

Abstract

The efficiency of plating of wild-type lambda on a host lysogenic for P2 is less than 10(-6), and only a small number of infected cells produce progeny phage. Lambda can adsorb and inject its DNA normally in such cells; the DNA can circularize and is not nicked or degraded, but replication is severely impaired. Mutants of P2, which as prophages no longer interfere with lambda, have been isolated and found to be recessive to wild type, implying that P2 prophage codes for a diffusible product involved in lambda interference. The P2 gene product responsible for preventing lambda growth also kills recombination-deficient bacteria of the recB and recC classes under conditions where P2 does not normally kill the host. Mutants of lambda that are resistant to interference are recessive to wild-type lambda. Thus lambda actively participates in its own interference. The lambda-mutants that are resistant to interference are unable to synthesize at least two nonessential proteins. In addition, they are unable to grow on recombination-deficient bacteria of the recA class, but they can grow on recA recB double mutants.

摘要

野生型λ噬菌体在对P2溶源化的宿主上的平板接种效率低于10^(-6),只有少数受感染细胞产生子代噬菌体。λ噬菌体能够在这类细胞中正常吸附并注入其DNA;DNA能够环化,且未被切割或降解,但复制受到严重损害。已分离出不再作为原噬菌体干扰λ噬菌体的P2突变体,且发现它们对野生型呈隐性,这意味着P2原噬菌体编码一种参与λ噬菌体干扰的可扩散产物。负责阻止λ噬菌体生长的P2基因产物在P2通常不杀死宿主的条件下,也会杀死recB和recC类重组缺陷型细菌。对干扰具有抗性的λ噬菌体突变体对野生型λ噬菌体呈隐性。因此,λ噬菌体积极参与自身的干扰过程。对干扰具有抗性的λ噬菌体突变体至少无法合成两种非必需蛋白。此外,它们无法在recA类重组缺陷型细菌上生长,但能在recA recB双突变体上生长。

相似文献

1
Bacteriophage lambda; abortive infection of bacteria lysogenic for phage P2.
Proc Natl Acad Sci U S A. 1970 Jul;66(3):587-94. doi: 10.1073/pnas.66.3.587.
2
3
Bacteriophage P2: interaction with phage lambda and with recombination-deficient bacteria.
Virology. 1971 Nov;46(2):387-96. doi: 10.1016/0042-6822(71)90040-7.
4
An Escherichia coli gene required for bacteriophage P2-lambda interference.
J Virol. 1983 Dec;48(3):616-26. doi: 10.1128/JVI.48.3.616-626.1983.
5
Degradation of bacteriophage lambda deoxyribonucleic acid after restriction by Escherichia coli K-12.
J Bacteriol. 1972 Oct;112(1):161-9. doi: 10.1128/jb.112.1.161-169.1972.
6
Precursor and product in bacteriophage lambda recombination.
Proc Natl Acad Sci U S A. 1972 Nov;69(11):3195-8. doi: 10.1073/pnas.69.11.3195.
8
A bacterial mutation blocking P2 phage late gene expression.
Proc Natl Acad Sci U S A. 1975 Jul;72(7):2770-4. doi: 10.1073/pnas.72.7.2770.
9
Transduction of bacteriophage lambda by bacteriophage T1.
J Virol. 1979 May;30(2):543-50. doi: 10.1128/JVI.30.2.543-550.1979.
10
Interference in phage growth by a resident plasmid lambda dv. I. The mode of interference.
Virology. 1972 Dec;50(3):713-26. doi: 10.1016/0042-6822(72)90425-4.

引用本文的文献

1
Gabija restricts phages that antagonize a conserved host DNA repair complex.
bioRxiv. 2025 Aug 30:2025.08.30.673261. doi: 10.1101/2025.08.30.673261.
2
A prophage intercepts pathogenic activity of infecting phage for defense.
Cell Host Microbe. 2025 Aug 27. doi: 10.1016/j.chom.2025.08.006.
4
A Class 1 OLD family nuclease encoded by is countered by a vibriophage-encoded direct inhibitor.
bioRxiv. 2025 Jan 6:2025.01.06.631583. doi: 10.1101/2025.01.06.631583.
5
A prophage competition element protects Salmonella from lysis.
Cell Host Microbe. 2024 Dec 11;32(12):2063-2079.e8. doi: 10.1016/j.chom.2024.10.012. Epub 2024 Nov 7.
7
OLD family nuclease function across diverse anti-phage defense systems.
Front Microbiol. 2023 Sep 28;14:1268820. doi: 10.3389/fmicb.2023.1268820. eCollection 2023.
8
Defining the expanding mechanisms of phage-mediated activation of bacterial immunity.
Curr Opin Microbiol. 2023 Aug;74:102325. doi: 10.1016/j.mib.2023.102325. Epub 2023 May 12.
9
PADLOC: a web server for the identification of antiviral defence systems in microbial genomes.
Nucleic Acids Res. 2022 Jul 5;50(W1):W541-W550. doi: 10.1093/nar/gkac400.

本文引用的文献

1
Genetic Studies of Lysogenicity in Escherichia Coli.
Genetics. 1953 Jan;38(1):51-64. doi: 10.1093/genetics/38.1.51.
3
Lysogeny.
Adv Virus Res. 1958;5:151-93. doi: 10.1016/s0065-3527(08)60673-9.
4
Deletion mapping of the c-3-N region of bacteriophage.
Virology. 1969 Sep;39(1):137-41. doi: 10.1016/0042-6822(69)90356-0.
5
Studies on the genetics of biotin-transducing, defective variants of bacteriophage lambda.
Virology. 1968 Sep;36(1):30-41. doi: 10.1016/0042-6822(68)90113-x.
6
Cohesive sites on the deoxyribonucleic acids from several temperate coliphages.
J Mol Biol. 1966 Jun;17(2):343-57. doi: 10.1016/s0022-2836(66)80146-8.
8
Growth abnormalities in Hfr derivatives of Escherichia coli strain C.
J Gen Microbiol. 1965 Sep;40(3):365-76. doi: 10.1099/00221287-40-3-365.
9
The general recombination system of bacteriophage lambda.
Cold Spring Harb Symp Quant Biol. 1968;33:711-4. doi: 10.1101/sqb.1968.033.01.080.
10
Nonessential functions of bacteriophage lambda.
Virology. 1969 Feb;37(2):177-88. doi: 10.1016/0042-6822(69)90197-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验