Suppr超能文献

铜绿假单胞菌对甘油的转运

Transport of glycerol by Pseudomonas aeruginosa.

作者信息

Tsay S S, Brown K K, Gaudy E T

出版信息

J Bacteriol. 1971 Oct;108(1):82-8. doi: 10.1128/jb.108.1.82-88.1971.

Abstract

In Pseudomonas aeruginosa, the transport of glycerol was shown to be genetically controlled and to be dependent on induction by glycerol. Accumulation of (14)C-glycerol was almost completely absent in uninduced cells and in a transport-negative mutant. Kinetic studies with induced cells suggested that glycerol may be transported by two systems with different affinities for glycerol. Osmotically shocked cells did not transport glycerol, and the supernatant fluid from shocked cells contained glycerol-binding activity demonstrable by equilibrium dialysis. The binding protein was not glycerol kinase. Binding activity was absent in shock fluids from the transport-negative mutant and from uninduced cells. The glycerol-binding protein was partially purified by precipitation with ammonium sulfate. Mild heat treatment completely eliminated the binding activity of shock fluid and of the partially purified protein. Sodium azide and N-ethylmaleimide inhibited both transport by whole cells and binding of glycerol by shock fluid. It is concluded that transport of glycerol by P. aeruginosa involves a binding protein responsible for recognition of glycerol and may occur by facilitated diffusion or active transport. A requirement for energy has not been demonstrated.

摘要

在铜绿假单胞菌中,甘油的转运显示受基因控制且依赖于甘油诱导。在未诱导的细胞和转运阴性突变体中,几乎完全不存在(14)C-甘油的积累。对诱导细胞的动力学研究表明,甘油可能通过两种对甘油具有不同亲和力的系统进行转运。经渗透压休克处理的细胞不转运甘油,且休克细胞的上清液含有可通过平衡透析证明的甘油结合活性。该结合蛋白不是甘油激酶。在转运阴性突变体和未诱导细胞的休克液中不存在结合活性。通过硫酸铵沉淀对甘油结合蛋白进行了部分纯化。温和的热处理完全消除了休克液和部分纯化蛋白的结合活性。叠氮化钠和N-乙基马来酰亚胺既抑制全细胞的转运,也抑制休克液对甘油的结合。得出的结论是,铜绿假单胞菌对甘油的转运涉及一种负责识别甘油的结合蛋白,可能通过易化扩散或主动转运发生。尚未证明对能量有需求。

相似文献

1
Transport of glycerol by Pseudomonas aeruginosa.
J Bacteriol. 1971 Oct;108(1):82-8. doi: 10.1128/jb.108.1.82-88.1971.
2
The metabolism of 2-oxogluconate by Pseudomonas aeruginosa.
J Gen Microbiol. 1973 Oct;78(2):319-29. doi: 10.1099/00221287-78-2-319.
3
The effect of nutrient limitation on glycerol uptake and metabolism in continuous cultures of Pseudomonas aeruginosa.
Microbiology (Reading). 1994 Nov;140 ( Pt 11):2961-9. doi: 10.1099/13500872-140-11-2961.
4
Independent regulation of hexose catabolizing enzymes and glucose transport activity in Pseudomonas aeruginosa.
Biochem Biophys Res Commun. 1972 Sep 5;48(5):1041-8. doi: 10.1016/0006-291x(72)90813-3.
6
Transport of aromatic amino acids by Pseudomonas aeruginosa.
J Bacteriol. 1971 Mar;105(3):1039-46. doi: 10.1128/jb.105.3.1039-1046.1971.
9
Transport of glucose, gluconate, and methyl alpha-D-glucoside by Pseudomonas aeruginosa.
J Bacteriol. 1974 Mar;117(3):1261-9. doi: 10.1128/jb.117.3.1261-1269.1974.

引用本文的文献

1
Osmotrophy of dissolved organic carbon by coccolithophores in darkness.
New Phytol. 2022 Jan;233(2):781-794. doi: 10.1111/nph.17819. Epub 2021 Nov 16.
3
Fosfomycin enhances the active transport of tobramycin in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2012 Mar;56(3):1529-38. doi: 10.1128/AAC.05958-11. Epub 2012 Jan 9.
4
Regulation of glycerol metabolism in Pseudomonas aeruginosa: characterization of the glpR repressor gene.
J Bacteriol. 1996 Sep;178(17):5215-21. doi: 10.1128/jb.178.17.5215-5221.1996.
6
Carbohydrate transport in bacteria.
Microbiol Rev. 1980 Sep;44(3):385-418. doi: 10.1128/mr.44.3.385-418.1980.
7
Purification and properties of a binding protein for branched-chain amino acids in Pseudomonas aeruginosa.
J Bacteriol. 1980 Mar;141(3):1055-63. doi: 10.1128/jb.141.3.1055-1063.1980.
8
Multiplication of fluorescent pseudomonads at low substrate concentrations in tap water.
Antonie Van Leeuwenhoek. 1982;48(3):229-43. doi: 10.1007/BF00400383.
9
Properties of alpha-aminoisobutyric acid transport in a thermophilic microorganism.
J Bacteriol. 1974 May;118(2):414-24. doi: 10.1128/jb.118.2.414-424.1974.
10
Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli.
J Bacteriol. 1972 Nov;112(2):784-90. doi: 10.1128/jb.112.2.784-790.1972.

本文引用的文献

1
CAPTURE OF GLYCEROL BY CELLS OF ESCHERICHIA COLI.
Biochim Biophys Acta. 1965 Mar 29;94:479-87. doi: 10.1016/0926-6585(65)90056-7.
3
UPTAKE OF AMINO ACIDS BY SALMONELLA TYPHIMURIUM.
Arch Biochem Biophys. 1964 Jan;104:1-18. doi: 10.1016/s0003-9861(64)80028-x.
4
Utilization of L-alpha-glycerophosphate by Escherichia coli without hydrolysis.
Proc Natl Acad Sci U S A. 1962 Dec 15;48(12):2145-50. doi: 10.1073/pnas.48.12.2145.
5
Mitosis of chick fibroblasts in the presence of unsaturated imides and sulphydryl compounds.
Biochim Biophys Acta. 1952;9(1):61-4. doi: 10.1016/0006-3002(52)90120-0.
7
Interference in the Lowry method for protein determination.
Science. 1970 Jul 3;169(3940):97-8. doi: 10.1126/science.169.3940.97-a.
8
Properties of the glutamate transport system in Escherichia coli.
J Bacteriol. 1967 Mar;93(3):1009-16. doi: 10.1128/jb.93.3.1009-1016.1967.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验