Suppr超能文献

面包酵母中糖结构与糖转运系统竞争之间的关系。

Relationship between sugar structure and competition for the sugar transport system in Bakers' yeast.

作者信息

Cirillo V P

出版信息

J Bacteriol. 1968 Feb;95(2):603-11. doi: 10.1128/jb.95.2.603-611.1968.

Abstract

Twenty-five sugars have been compared as inhibitors of l-sorbose or d-xylose transport by the constitutive, monosaccharide transport system in bakers' yeast. d-Glucose showed the highest activity (i.e., apparent K(i) = 5 mm). Since all sugars except 2-deoxyglucose showed a decrease in activity relative to glucose (i.e., apparent K(i) = 25 - >2,000 mm), an attempt was made to relate the activity of each sugar with the way its structure differs from that of d-glucose. Assuming that the inhibition was the result of sugar-carrier complex formation, the analysis showed that the transport system has a rather broad specificity for pyranoses. Single changes at each of the five carbons of d-glucose (except for the 2-deoxy derivative) result in variable decreases in activity depending upon the carbon number and the alteration. The largest decrease in activity effected by a single change is the methylation or glucosylation of the anomeric hydroxyl. The combination of two or more changes leads to a decrease which is greater than the decrease in activity resulting from the individual changes occurring alone.

摘要

已经比较了25种糖类作为面包酵母中组成型单糖转运系统对l-山梨糖或d-木糖转运的抑制剂。d-葡萄糖表现出最高的活性(即,表观K(i)=5 mM)。由于除2-脱氧葡萄糖外的所有糖类相对于葡萄糖的活性均降低(即,表观K(i)=25->2000 mM),因此尝试将每种糖类的活性与其结构与d-葡萄糖结构的差异方式联系起来。假设抑制作用是糖-载体复合物形成的结果,分析表明转运系统对吡喃糖具有相当广泛的特异性。d-葡萄糖的五个碳原子中的每一个发生单一变化(2-脱氧衍生物除外)会导致活性根据碳原子数和变化而发生不同程度的降低。由单一变化引起的最大活性降低是异头羟基的甲基化或糖基化。两个或更多变化的组合导致的活性降低大于单独发生的单个变化导致的活性降低。

相似文献

1
Relationship between sugar structure and competition for the sugar transport system in Bakers' yeast.
J Bacteriol. 1968 Feb;95(2):603-11. doi: 10.1128/jb.95.2.603-611.1968.
2
[Penetration of monosaccharides in sections of guinea pig cortex].
C R Seances Soc Biol Fil. 1967;161(10):2002-8.
3
The "dimeriser" hypothesis for sugar permeation through red cell membrane: reinvestigation of original evidence.
Biochim Biophys Acta. 1966 Jul 13;120(3):395-405. doi: 10.1016/0926-6585(66)90306-2.
4
Densitometry of yeast cells and protoplasts during sugar uptake.
Folia Microbiol (Praha). 1969;14(1):62-9. doi: 10.1007/BF02869401.
5
Specificity of the constitutive hexose transport in yeast.
Eur J Biochem. 1968 Aug;5(3):321-9. doi: 10.1111/j.1432-1033.1968.tb00373.x.
6
Uptake of monosaccharides by guinea-pig cerebral-cortex slices.
Biochem J. 1969 Apr;112(3):367-71. doi: 10.1042/bj1120367.
9
Intestinal sugar transport: ionic activation and chemical specificity.
Biochim Biophys Acta. 1969 Jun 3;183(1):169-81. doi: 10.1016/0005-2736(69)90141-2.
10
Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae.
Biochim Biophys Acta. 1967 Feb 1;135(1):112-9. doi: 10.1016/0005-2736(67)90013-2.

引用本文的文献

1
Evolution and functional diversification of yeast sugar transporters.
Essays Biochem. 2023 Sep 13;67(5):811-827. doi: 10.1042/EBC20220233.
2
Integrative expression vectors for overexpression of xylitol dehydrogenase (XYL2) in Osmotolerant yeast, Candida glycerinogenes WL2002-5.
J Ind Microbiol Biotechnol. 2015 Jan;42(1):113-24. doi: 10.1007/s10295-014-1530-4. Epub 2014 Nov 4.
3
[Auxin transport and phototropism].
Planta. 1968 Dec;83(4):372-86. doi: 10.1007/BF00387617.
5
Stereospecificity of the glucose carrier in sugar beet suspension cells.
Plant Physiol. 1985 Jun;78(2):291-5. doi: 10.1104/pp.78.2.291.
6
d-Glucose Transport System of Zymomonas mobilis.
Appl Environ Microbiol. 1985 Jan;49(1):151-7. doi: 10.1128/aem.49.1.151-157.1985.
8
Role of D-ribose as a cometabolite in D-xylose metabolism by Saccharomyces cerevisiae.
Appl Environ Microbiol. 1993 May;59(5):1487-94. doi: 10.1128/aem.59.5.1487-1494.1993.
10
Anomeric specificity of the monosaccharide carrier in yeasts and yeast-like organisms.
Folia Microbiol (Praha). 1981;26(2):95-102. doi: 10.1007/BF02927362.

本文引用的文献

1
Simplified way to cultivate chick kidney cells and maintain the culture without serum.
Science. 1959 Sep 25;130(3378):793. doi: 10.1126/science.130.3378.793.
2
Mechanism of glucose transport across the yeast cell membrane.
J Bacteriol. 1962 Sep;84(3):485-91. doi: 10.1128/jb.84.3.485-491.1962.
4
A new colorimetric method for the determination of ketohexoses in presence of aldoses, ketoheptoses and ketopentoses.
Biochim Biophys Acta. 1960 Mar 25;39:140-4. doi: 10.1016/0006-3002(60)90129-3.
7
Methods for the determination of blood sugar based on the periodate reaction.
Arch Biochem Biophys. 1953 Jan;42(1):106-13. doi: 10.1016/0003-9861(53)90244-6.
8
Properties of the sugar carrier in baker's yeast. II. Specificity of transport.
Folia Microbiol (Praha). 1967;12(2):121-31. doi: 10.1007/BF02896872.
9
Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae.
Biochim Biophys Acta. 1967 Feb 1;135(1):112-9. doi: 10.1016/0005-2736(67)90013-2.
10
Sorbose counterflow as a measure of intracellular glucose in baker's yeast.
J Bacteriol. 1965 Dec;90(6):1605-10. doi: 10.1128/jb.90.6.1605-1610.1965.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验