Hackney D D
J Biol Chem. 1980 Jun 10;255(11):5320-8.
A theoretical analysis has been derived which allows the analytical calculation of the complete distribution of 18O-labeled Pi species expected to occur during medium Pi equilibrium HOH exchange of [18O]Pi and to be produced by intermediate Pi equilibrium HOH exchange during net hydrolysis of [18O]PPi or other labeled phosphate compounds. The observed distributions with catalysis by yeast inorganic pyrophosphatase are found to agree closely with the theoretical values indicating that the exchange reaction can be adequately described by a unique value of the partitioning of bound Pi between release from the enzyme versus formation of bound PPi with loss of an oxygen to the water. The limitations on the exclusion of other mechanisms are discussed. The extent of this partitioning does change, however, under some experimental conditions. At low pH, with activation by Mg2+ or Mn2+, the relative rate of release of Pi is found to increase. The extent of exchange is also dependent on the nature of the activating metal, being greatest with Co2+. During PPi hydrolysis with PPi in excess over Mg2+, a shift to lower extents of exchange is observed.