Suppr超能文献

AC impedance of the perineurium of the frog sciatic nerve.

作者信息

Weerasuriya A, Spangler R A, Rapoport S I, Taylor R E

出版信息

Biophys J. 1984 Aug;46(2):167-74. doi: 10.1016/S0006-3495(84)84009-6.

Abstract

The AC impedance of the isolated perineurium of the frog sciatic nerve was examined at frequencies from 2 Hz to 100 kHz. A Nyquist plot of the imaginary and real components of the impedance demonstrated more than 1 capacitative element, and a DC resistance of 478 +/- 34 (SEM, n = 27) omega cm2. Transperineurial potential in the absence of externally applied current was 0.0 +/- 0.5 mV. The impedance data were fitted by nonlinear least squares to an equation representing the generalized impedance of four equivalent circuits each with two resistive and two capacitative elements. Only two of these circuits were consistent with perineurial morphology, however. In both, the perineurial cells were represented by a resistive and capacitative element in parallel, where capacitance was less than 0.1 microF/cm2. The extracellular matrix and intercellular junctions of the perineurium were represented as single resistive and capacitative elements in parallel or in series, where capacitance exceeded 2 microF/cm2. Immersion of the perineurium in low conductance Ringer's solution increased DC resistive elements as compared with their values in isotonic Ringer's solution, whereas treatment for 10 min with a hypertonic Ringer's solution (containing an additional 1.0 or 2.0 mol NaCl/liter of solution) reduced DC resistive elements, consistent with changes in perineurial permeability. The results indicate that (a) perineurial impedance contains two time constants and can be analyzed in terms of contributions from cellular and extracellular elements, and (b) transperineurial DC resistance, which is intermediate between DC resistance for leaky and nonleaky epithelia, represents intercellular resistance and can be experimentally modified by hypertonicity.

摘要

相似文献

1
AC impedance of the perineurium of the frog sciatic nerve.
Biophys J. 1984 Aug;46(2):167-74. doi: 10.1016/S0006-3495(84)84009-6.
2
An electrophysiological method for measuring the potassium permeability of the nerve perineurium.
Brain Res. 1997 Nov 21;776(1-2):204-13. doi: 10.1016/s0006-8993(97)01038-x.
5
Peripheral nerve as an osmometer: role of the perineurium in frog sciatic nerve.
Am J Physiol. 1983 Jan;244(1):C75-81. doi: 10.1152/ajpcell.1983.244.1.C75.
6
Ionic permeabilities of the frog perineurium.
Brain Res. 1980 Jun 9;191(2):405-15. doi: 10.1016/0006-8993(80)91290-1.
7
Modification of permeability of frog perineurium to [14C]-sucrose by stretch and hypertonicity.
Brain Res. 1979 Sep 21;173(3):503-12. doi: 10.1016/0006-8993(79)90244-0.
8
Transverse impedance of single frog skeletal muscle fibers.
Biophys J. 1982 Oct;40(1):51-9. doi: 10.1016/S0006-3495(82)84457-3.
9
Frequency-dependent capacitance of the apical membrane of frog skin: dielectric relaxation processes.
Biophys J. 1999 Jan;76(1 Pt 1):219-32. doi: 10.1016/S0006-3495(99)77191-2.
10
Characterization of the electrical properties of mammalian peripheral nerve laminae.
Artif Organs. 2023 Apr;47(4):705-720. doi: 10.1111/aor.14500. Epub 2023 Jan 31.

引用本文的文献

1
A Methodological Framework for the Efficient Characterization of Peripheral Nerve Stimulation Parameters.
medRxiv. 2025 May 23:2025.03.29.25324704. doi: 10.1101/2025.03.29.25324704.
2
Scaling of vagus nerve stimulation parameters does not achieve equivalent nerve responses across species.
Bioelectron Med. 2025 May 16;11(1):11. doi: 10.1186/s42234-025-00174-9.
4
NRV: An open framework for in silico evaluation of peripheral nerve electrical stimulation strategies.
PLoS Comput Biol. 2024 Jul 12;20(7):e1011826. doi: 10.1371/journal.pcbi.1011826. eCollection 2024 Jul.
8
Measuring and modeling the effects of vagus nerve stimulation on heart rate and laryngeal muscles.
Bioelectron Med. 2023 Feb 17;9(1):3. doi: 10.1186/s42234-023-00107-4.
9
Characterization of the electrical properties of mammalian peripheral nerve laminae.
Artif Organs. 2023 Apr;47(4):705-720. doi: 10.1111/aor.14500. Epub 2023 Jan 31.
10
A Highly Miniaturized, Chronically Implanted ASIC for Electrical Nerve Stimulation.
IEEE Trans Biomed Circuits Syst. 2022 Apr;16(2):233-243. doi: 10.1109/TBCAS.2022.3153282. Epub 2022 May 19.

本文引用的文献

1
The relation of structure to the spread of excitation in the frog's sciatic trunk.
J Physiol. 1949 Dec 15;110(1-2):110-35. doi: 10.1113/jphysiol.1949.sp004426.
2
The connective tissue sheath of the nerve as effective diffusion barrier.
J Cell Comp Physiol. 1949 Aug;34(1):1-16. doi: 10.1002/jcp.1030340102.
3
Nerve sheath as a barrier to the action of certain substances.
Am J Physiol. 1951 Aug;166(2):229-40. doi: 10.1152/ajplegacy.1951.166.2.229.
5
LINEAR ELECTRICAL PROPERTIES OF STRIATED MUSCLE FIBRES OBSERVED WITH INTRACELLULAR ELECTRODES.
Proc R Soc Lond B Biol Sci. 1964 Apr 14;160:69-123. doi: 10.1098/rspb.1964.0030.
6
AN ANALYSIS OF THE TRANSVERSE ELECTRICAL IMPEDANCE OF STRIATED MUSCLE.
Proc R Soc Lond B Biol Sci. 1964 Mar 17;159:606-51. doi: 10.1098/rspb.1964.0023.
7
Some observations on perfused frog sciatic nerves.
J Physiol. 1954 Feb 26;123(2):338-56. doi: 10.1113/jphysiol.1954.sp005055.
9
Electrical resistance of brain microvascular endothelium.
Brain Res. 1982 Jun 3;241(1):49-55. doi: 10.1016/0006-8993(82)91227-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验