Hyatt R E
J Appl Physiol Respir Environ Exerc Physiol. 1983 Jul;55(1 Pt 1):1-7. doi: 10.1152/jappl.1983.55.1.1.
The first major advance in understanding expiratory flow limitation of the lungs came with the description of isovolume pressure-flow curves. These curves documented the existence of a volume-dependent limit to maximal expiratory flow and led directly to the description of the maximal expiratory flow-volume (MEFV) curve. Definitive modeling of flow limitation awaited the description of a localized mechanism that dominated the flow-limiting process. The phenomenon of wave speed limitation of flow was shown to apply to the airways and provided the needed localized mechanism. Using this concept and recent data on airway mechanics and the frictional losses in the flow, a computational model of the MEFV curve has been developed. Further progress will require modeling of inhomogeneous emptying in diseased lungs, perfecting noninvasive techniques of estimating pertinent airway characteristics, and improving techniques for increasing the signal-to-noise ratio in MEFV curves.
对肺呼气流量限制的理解取得的首个重大进展是对等容压力-流量曲线的描述。这些曲线记录了最大呼气流量存在与容积相关的限制,并直接促成了最大呼气流量-容积(MEFV)曲线的描述。流量限制的确切模型有待对主导流量限制过程的局部机制进行描述。气流波速限制现象被证明适用于气道,并提供了所需的局部机制。利用这一概念以及近期关于气道力学和气流摩擦损失的数据,已开发出MEFV曲线的计算模型。进一步的进展将需要对患病肺部的不均匀排空进行建模,完善估计相关气道特征的非侵入性技术,以及改进提高MEFV曲线信噪比的技术。