Suppr超能文献

Metabolism of [14C]trichloroethylene to 14CO2 and interaction of a metabolite with liver DNA in rats and mice.

作者信息

Parchman L G, Magee P N

出版信息

J Toxicol Environ Health. 1982 May-Jun;9(5-6):797-813. doi: 10.1080/15287398209530204.

Abstract

Male Sprague-Dawley rats and male B6C3F1 mice excreted 5-15% of a tracer dose of [14C]trichloroethylene as 14CO2 within 24 h after ip injection of a single dose in a corn-oil vehicle. The proportion of the dose excreted as CO2 was greater in mice than in rats, but increased in the rats after starvation or pretreatment with phenobarbital. As the dose was increased toward the LD50 level, the proportion excreted as 14CO2 decreased slightly, but this was largely due to increased loss of unchanged trichloroethylene. The excretion of 14CO2 was thus correlated with the expected level of microsomal metabolism of trichloroethylene to an electrophilic intermediate capable of binding to glutathione or macromolecules. Liver protein labeling was observed to be relatively high (10,000-23,000 cpm/mg in the mouse), while DNA labeling was consistently observed to be very low, not allowing identification of any adducts by high-performance liquid chromatography (HPLC). Also, no effect on DNA fragmentation was seen by alkaline sucrose gradient centrifugation after injection of an LD50 dose of trichloroethylene. The ability of trichloroethylene to interact with DNA in vivo was thus observed to be very slight.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验