Omrani G R, Gammon D E, Bilezikian J P
Biochim Biophys Acta. 1980 May 22;629(3):455-69. doi: 10.1016/0304-4165(80)90151-8.
A 100 000 X g soluble, supernatant fraction obtained from the hemolysate of rat reticulocytes was studied for its effect upon catecholamine-sensitive adenylate cyclase activity in reticulocyte membranes. The supernatant material, devoid of adenylate cyclase activity itself, amplified isoproterenol-dependent activity in responsive membranes and was an essential requirement for the expression of hormone sensitivity in membranes rendered unresponsive to isoproterenol alone. The increment in catecholamine-associated activity conferred upon reticulocyte membranes by the supernatant material was beta-adrenergic because it did not affect basal or fluoride-related activity and was completely inhibited by propranolol. Guanine nucleotides were present in the supernatant but could account for only a fraction of the total activity because the supernatant was able to cause greater stimulation than maximal concentrations of GTP and when specified concentrations of exogenous GTP were compared with equivalent nucleotide concentrations in the supernatant, the supernatant always led to greater activity. The supernatant was resolved into protein-and nucleotide-containing components by ion-exchange chromatography. Each component was approximately one-half as active in amplifying catecholamine-dependent adenylate cyclase as the unresolved, crude supernatant material. The activity eluted in the first peak of the DEAE chromatogram was resistant to alkaline phosphatase, sensitive to trypsin, not dialyzable and contained no detectable concentrations of GTP or GDP. In contrast, the activity eluted the second peak of the DEAE chromatogram was sensitive to alkaline phophatase, resistant to trypsin, completely dialyzable and contained both GTP (30 microM) and GDP (10 microM) in significant concentrations. Neither the crude supernatant nor its two active components affected the binding of [125I]-iodohydroxybenzylpindolol to reticulocyte membranes. These observations establish in rat reticulocytes the presence of protein and guanine nucleotide constituents which have independent influences upon the catecholamine-responsive adenylate cyclase of reticulocyte membranes.