Suppr超能文献

乳腺癌:基于BI-RADS标准化词典的人工神经网络预测

Breast cancer: prediction with artificial neural network based on BI-RADS standardized lexicon.

作者信息

Baker J A, Kornguth P J, Lo J Y, Williford M E, Floyd C E

机构信息

Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Radiology. 1995 Sep;196(3):817-22. doi: 10.1148/radiology.196.3.7644649.

Abstract

PURPOSE

To determine if an artificial neural network (ANN) to categorize benign and malignant breast lesions can be standardized for use by all radiologists.

MATERIALS AND METHODS

An ANN was constructed based on the standardized lexicon of the Breast Imaging Recording and Data System (BI-RADS) of the American College of Radiology. Eighteen inputs to the network included 10 BI-RADS lesion descriptors and eight input values from the patient's medical history. The network was trained and tested on 206 cases (133 benign, 73 malignant cases). Receiver operating characteristic curves for the network and radiologists were compared.

RESULTS

At a specified output threshold, the ANN would have improved the positive predictive value (PPV) of biopsy from 35% to 61% with a relative sensitivity of 100%. At a fixed sensitivity of 95%, the specificity of the ANN (62%) was significantly greater than the specificity of radiologists (30%) (P < .01).

CONCLUSION

The BI-RADS lexicon provides a standardized language between mammographers and an ANN that can improve the PPV of breast biopsy.

摘要

目的

确定一种用于对乳腺良恶性病变进行分类的人工神经网络(ANN)是否能被所有放射科医生标准化使用。

材料与方法

基于美国放射学会乳腺影像记录与数据系统(BI-RADS)的标准化词汇构建了一个人工神经网络。该网络的18个输入包括10个BI-RADS病变描述符和来自患者病史的8个输入值。该网络在206例病例(133例良性,73例恶性病例)上进行了训练和测试。比较了该网络和放射科医生的受试者操作特征曲线。

结果

在指定的输出阈值下,人工神经网络可将活检的阳性预测值(PPV)从35%提高到61%,相对灵敏度为100%。在固定灵敏度为95%时,人工神经网络的特异性(62%)显著高于放射科医生的特异性(30%)(P <.01)。

结论

BI-RADS词汇为乳腺造影医生和人工神经网络之间提供了一种标准化语言,该网络可提高乳腺活检的PPV。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验