Suppr超能文献

Functional expression of adrenergic and opioid receptors in Xenopus oocytes: interaction between alpha 2- and beta 2-adrenergic receptors.

作者信息

Birnbaum A K, Wotta D R, Law P Y, Wilcox G L

机构信息

Department of Pharmacology, University of Minnesota, Minneapolis 55455.

出版信息

Brain Res Mol Brain Res. 1995 Jan;28(1):72-80. doi: 10.1016/0169-328x(94)00185-h.

Abstract

We functionally expressed alpha 2-adrenergic, beta 2-adrenergic, and delta-opioid receptors in Xenopus laevis oocytes. We detected receptor function as changes in currents carried by adenosine 3',5'-cyclic monophosphate (cAMP)-regulated chloride channels provided by the cystic fibrosis transmembrane conductance regulator (CFTR) and recorded by two-electrode voltage clamp. Co-application of forskolin and isobutylmethylxanthine (IBMX) or IBMX alone produced currents with a reversal potential indicative of chloride ions only in oocytes previously injected with mRNA encoding CFTR. Isoproterenol produced concentration-dependent responses in oocytes injected with mRNA encoding beta 2-adrenergic receptors and CFTR, and co-administration of propranolol antagonized these responses. Similarly, the alpha 2-adrenergic agonist UK14304 increased IBMX-induced currents only in oocytes injected with mRNA encoding alpha 2-adrenergic receptors and CFTR, and idazoxan antagonized these enhancements. The delta-opioid agonist DADLE produced concentration-related, naloxone-reversible increases in IBMX- and forskolin-induced currents only in oocytes injected with mRNA encoding delta-opioid receptors and CFTR. In oocytes co-injected with alpha 2, beta 2, and CFTR mRNAs, isobolographic analysis revealed an additive interaction between alpha 2- and beta 2-adrenergic receptors. These studies establish the oocyte as a cell system for studying the interactions among cAMP-modulating G protein-coupled receptors and provide another example of alternative coupling of alpha 2-adrenergic and delta-opioid receptors to G proteins, possibly Gs proteins, other than Gi proteins.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验