Suppr超能文献

感知模糊逻辑模型的测量理论分析

A measurement-theoretic analysis of the fuzzy logic model of perception.

作者信息

Crowther C S, Batchelder W H, Hu X

机构信息

Department of Linguistics, University of California, Los Angeles, USA.

出版信息

Psychol Rev. 1995 Apr;102(2):396-408. doi: 10.1037/0033-295x.102.2.396.

Abstract

The fuzzy logic model of perception (FLMP) is analyzed from a measurement-theoretic perspective. FLMP has an impressive history of fitting factorial data, suggesting that its probabilistic form is valid. The authors raise questions about the underlying processing assumptions of FLMP. Although FLMP parameters are interpreted as fuzzy logic truth values, the authors demonstrate that for several factorial designs widely used in choice experiments, most desirable fuzzy truth value properties fail to hold under permissible rescalings, suggesting that the fuzzy logic interpretation may be unwarranted. The authors show that FLMP's choice rule is equivalent to a version of G. Rasch's (1960) item response theory model, and the nature of FLMP measurement scales is transparent when stated in this form. Statistical inference theory exists for the Rasch model and its equivalent forms. In fact, FLMP can be reparameterized as a simple 2-category logit model, thereby facilitating interpretation of its measurement scales and allowing access to commercially available software for performing statistical inference.

摘要

从测量理论的角度对感知模糊逻辑模型(FLMP)进行了分析。FLMP在拟合因子数据方面有着令人印象深刻的历史,这表明其概率形式是有效的。作者对FLMP的潜在处理假设提出了疑问。尽管FLMP参数被解释为模糊逻辑真值,但作者证明,对于选择实验中广泛使用的几种因子设计,在允许的重新标度下,大多数理想的模糊真值属性并不成立,这表明模糊逻辑解释可能是没有根据的。作者表明,FLMP的选择规则等同于G. 拉施(1960)的项目反应理论模型的一个版本,并且以这种形式表述时,FLMP测量尺度的性质是透明的。对于拉施模型及其等效形式存在统计推断理论。事实上,FLMP可以重新参数化为一个简单的二分类逻辑模型,从而便于对其测量尺度进行解释,并允许使用商业软件进行统计推断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验