Björnstedt M, Hamberg M, Kumar S, Xue J, Holmgren A
Medical Nobel Institute for Biochemistry, Karolinska Institutet, Stockholm, Sweden.
J Biol Chem. 1995 May 19;270(20):11761-4. doi: 10.1074/jbc.270.20.11761.
Human placenta thioredoxin reductase (HP-TR) in the presence of NADPH-catalyzed reduction of (15S)-hydroperoxy-(5Z),(8Z),11(Z),13(E)-eicosatetraenoic acid ((15S)-HPETE) into the corresponding alcohol ((15S)-HETE). Incubation of 50 nM HP-TR and 0.5 mM NADPH with 300 microM 15-HPETE for 5 min resulted in formation of 16.5 microM 15-HETE. After 60 min, 74.7 microM 15-HPETE was reduced. The rate of the reduction of 15-HPETE by the HP-TR/NADPH peroxidase system was increased 8-fold by the presence of 2.5 microM selenocystine, a diselenide amino acid. In this case, 15-HPETE was catalytically reduced by the selenol amino acid, selenocysteine, generated from the diselenide by the HP-TR/NADPH system. To a smaller extent, selenodiglutathione or human thioredoxin also potentiated the reduction of 15-HPETE by HP-TR. Hydrogen peroxide and 15-HPETE were reduced at approximately the same rate by HP-TR, thioredoxin, and selenocystine. In contrast, t-butyl hydroperoxide was reduced at a 10-fold lower rate. Our data suggest two novel pathways for the reduction and detoxification of lipid hydroperoxides, hydrogen peroxide, and organic hydroperoxides, i.e. the human thioredoxin reductase-dependent pathway and a coupled reduction in the presence of selenols or selenide resulting from the reduction of selenocystine or selenodiglutathione.
人胎盘硫氧还蛋白还原酶(HP-TR)在NADPH存在的情况下催化将(15S)-氢过氧-(5Z),(8Z),11(Z),13(E)-二十碳四烯酸((15S)-HPETE)还原为相应的醇((15S)-HETE)。50 nM的HP-TR和0.5 mM的NADPH与300 μM的15-HPETE孵育5分钟,导致形成16.5 μM的15-HETE。60分钟后,74.7 μM的15-HPETE被还原。2.5 μM的硒代胱氨酸(一种二硒化物氨基酸)的存在使HP-TR/NADPH过氧化物酶系统对15-HPETE的还原速率提高了8倍。在这种情况下,15-HPETE被HP-TR/NADPH系统从二硒化物产生的硒醇氨基酸——硒代半胱氨酸催化还原。在较小程度上,硒代二谷胱甘肽或人硫氧还蛋白也增强了HP-TR对15-HPETE的还原。HP-TR、硫氧还蛋白和硒代胱氨酸以大致相同的速率还原过氧化氢和15-HPETE。相比之下,叔丁基过氧化氢的还原速率低10倍。我们的数据表明脂质氢过氧化物、过氧化氢和有机氢过氧化物的还原和解毒有两条新途径,即人硫氧还蛋白还原酶依赖性途径以及在硒醇或由硒代胱氨酸或硒代二谷胱甘肽还原产生的硒化物存在下的偶联还原途径。