Suppr超能文献

使用培养基浓缩物进行单克隆抗体工艺开发。

Monoclonal antibody process development using medium concentrates.

作者信息

Bibila T A, Ranucci C S, Glazomitsky K, Buckland B C, Aunins J G

机构信息

Bioprocess R&D Department, Merck Research Laboratories, Rahway, New Jersey 07065.

出版信息

Biotechnol Prog. 1994 Jan-Feb;10(1):87-96. doi: 10.1021/bp00025a011.

Abstract

A fed-batch process using concentrated medium was evaluated for its ability to improve cell culture longevity and final monoclonal antibody (MAb) titers for two monoclonal antibody producing cell lines. It was found to result in up to 7-fold increases in final antibody titers compared to batch culture controls. Although the development cell line specific fed-batch protocols is critical to the development of cost-efficient large-scale production processes, the use of complete medium concentrates provided us with a quick and simple method for producing large quantities of antibodies in the early stages of process development, thus accelerating early work on purification process development, analytical development, biochemical characterization, and safety studies. Insights gained from the concentrated medium fed-batch approach were valuable for the development of refined, cell line specific feeding strategies yielding final MAb titers on the order of 1-2 g/L. Process development data on the effects of inhibitory growth byproducts, medium osmolarity, and the mode of nutrient feed addition on culture longevity and MAb production and information on culture metabolic behavior were successfully incorporated in the development of the optimized fed-batch protocols.

摘要

针对使用浓缩培养基的补料分批培养工艺,评估了其对两种单克隆抗体产生细胞系延长细胞培养寿命和提高最终单克隆抗体(MAb)滴度的能力。结果发现,与分批培养对照相比,最终抗体滴度提高了7倍之多。虽然开发细胞系特异性补料分批培养方案对于开发具有成本效益的大规模生产工艺至关重要,但使用完全培养基浓缩物为我们在工艺开发的早期阶段提供了一种快速简便的大量生产抗体的方法,从而加速了纯化工艺开发、分析开发、生化特性鉴定和安全性研究等方面的早期工作。从浓缩培养基补料分批培养方法中获得的见解对于开发精细的、细胞系特异性补料策略很有价值,这些策略可产生1-2 g/L量级的最终MAb滴度。关于抑制性生长副产物、培养基渗透压以及营养物添加方式对培养寿命和MAb生产的影响的工艺开发数据,以及关于培养代谢行为的信息,都成功纳入了优化补料分批培养方案的开发过程中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验