Schlitt H A, Heller L, Aaron R, Best E, Ranken D M
Los Alamos National Laboratory, Biophysics Group P-6, NM 87545.
IEEE Trans Biomed Eng. 1995 Jan;42(1):52-8. doi: 10.1109/10.362919.
We implement the approach for solving the boundary integral equation for the electroencephalography (EEG) forward problem proposed by de Munck [1], in which the electric potential varies linearly across each plane triangle of the mesh. Previous solutions have assumed the potential is constant across an element. We calculate the electric potential and systematically investigate the effect of different mesh choices and dipole locations by using a three concentric sphere head model for which there is an analytic solution. Implementing the linear interpolation approximation results in errors that are approximately half those of the same mesh when the potential is assumed to be constant, and provides a reliable method for solving the problem.
我们采用了德蒙克[1]提出的求解脑电图(EEG)正向问题边界积分方程的方法,其中电势在网格的每个平面三角形上线性变化。先前的解决方案假设电势在一个单元内是恒定的。我们通过使用具有解析解的三层同心球头模型来计算电势,并系统地研究不同网格选择和偶极子位置的影响。采用线性插值近似所产生的误差约为电势假设恒定时相同网格误差的一半,并提供了一种可靠的问题求解方法。