Suppr超能文献

Effects of captopril on glucose transport activity in skeletal muscle of obese Zucker rats.

作者信息

Henriksen E J, Jacob S

机构信息

Department of Exercise and Sport Sciences, University of Arizona, Tucson 85721.

出版信息

Metabolism. 1995 Feb;44(2):267-72. doi: 10.1016/0026-0495(95)90276-7.

Abstract

This study tested whether the angiotensin-converting enzyme (ACE) inhibitor captopril can modify the glucose transport system in insulin-resistant skeletal muscle. Obese Zucker (fa/fa) rats (approximately 300 g)--a model of insulin resistance--were administered by gavage either a single dose (50 mg/kg body weight) or repeated doses (50 mg/kg/d for 14 consecutive days) of captopril. Corresponding groups of age-matched, vehicle-treated lean (Fa/-) littermates (approximately 170 g) were also studied. Glucose transport activity in the epitrochlearis muscle was assessed by in vitro 2-deoxyglucose (2-DG) uptake. The increase in 2-DG uptake due to insulin (2 mU/mL) in muscles from vehicle-treated obese rats was less than 50% (P < .05) of the increase observed in muscles from lean rats. Short-term captopril treatment improved insulin-stimulable 2-DG uptake in muscles from obese rats by 46% (P < .05), and this enhanced insulin action due to captopril was completely abolished by pretreatment with the bradykinin antagonist HOE 140 (100 micrograms/kg). Long-term treatment with captopril produced a 60% improvement in insulin-stimulated 2-DG uptake (P < .05). Contraction-stimulated 2-DG uptake was significantly impaired (-31%, P < .05) in the obese rat, but was not altered by long-term captopril treatment. These findings indicate that both short- and long-term treatments with captopril significantly improve insulin-stimulated glucose transport activity in skeletal muscle of the obese Zucker rat, and that this improvement involves bradykinin metabolism. These data therefore support the hypothesis that captopril-induced improvements in glucose disposal result in part from an enhancement of the skeletal muscle glucose transport system.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验