Suppr超能文献

Role of cationic proteins in the airway. Hyperresponsiveness due to airway inflammation.

作者信息

Coyle A J, Uchida D, Ackerman S J, Mitzner W, Irvin C G

机构信息

Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206.

出版信息

Am J Respir Crit Care Med. 1994 Nov;150(5 Pt 2):S63-71. doi: 10.1164/ajrccm/150.5_Pt_2.S63.

Abstract

Major basic protein (MBP) is a highly cationic protein found in the granules of eosinophils. It has been postulated that MBP may participate in the pathogenesis of airway hyperresponsiveness exhibited by asthmatic patients. Accordingly, we have employed a rat system to investigate the effect of human MBP instillation on airway responsiveness and the possible role of cationic charge in the determination of this effect. Major basic protein caused a significant increase in airway responsiveness to inhaled methacholine. Two polycations, poly-L-arginine and poly-L-lysine, also increased airway responsiveness to inhaled methacholine. Moreover, two other very different cationic proteins, platelet factor 4 (PF4) and cathepsin G were also capable of inducing airway hyperresponsiveness. These effects were dependent on their positive charge, since the charge--and, hence the effect--of these proteins was neutralized with low molecular weight heparin. In addition, other polyanions, such as low molecular weight heparin, albumin, or dextran sulfate, were also effective. We investigated whether two synthetic cationic proteins, poly-L-arginine and poly-L-lysine, could modify epithelial-dependent responses using a perfused guinea pig tracheal tube preparation. With an intact epithelium, methacholine was some 150 times less potent when applied intraluminally than when applied extraluminally. Perfusion of the luminal surface with cationic proteins increased the potency of intraluminally applied methacholine without modifying the responses to extraluminally applied methacholine. Cationic proteins also attenuated the relaxant effects of intraluminally applied KCl. These effects occurred in the absence of any overt epithelial cell damage. Our data demonstrates that cationic proteins can modify epithelial-dependent responses in the airways.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验