Suppr超能文献

感觉器官中用于旋转的极非正交轴:双翅目平衡棒系统的行为分析

Extremely non-orthogonal axes in a sense organ for rotation: behavioural analysis of the dipteran haltere system.

作者信息

Nalbach G

机构信息

Max-Planck-Institut für biologische Kybenetik, Tübingen, Germany.

出版信息

Neuroscience. 1994 Jul;61(1):149-63. doi: 10.1016/0306-4522(94)90068-x.

Abstract

Flies acquire information about self-rotation via Coriolis forces detected by their moving halteres. Information processing in the haltere system was analysed by exploiting the method of simulating rotational stimuli by vibrating the fly's body and simultaneously observing compensatory head and wing reactions. Although the force acting on one haltere contains Coriolis terms for rotations about three orthogonal axes, the one-haltered fly has only two measuring axes which are coded in lateral force components. A fly with two halteres has two vertical measuring axes and two horizontal axes, the latter spanning an angle of about 120 degrees. Thus, three-dimensional turning information is acquired by bilateral computation in a highly non-orthogonal system. In the stimulus velocity range up to 1000 degrees/s, comparison of intact and one-haltered flies demonstrates that for the head roll reaction the inputs from both halteres are summated, whereas for the pitch reaction the summated inputs are modified by bilateral inhibition. This non-linear operation results in uniform gains and axis fidelity for all stimulus directions in the case of the head reaction. Response saturation at high velocities takes place after the bilateral summation. The functional consequences of non-orthogonality in the dipteran haltere system is apparently superior sensitivity for pitch compared to roll. Minimization of the "area of confusion", an argument for orthogonality, seems to be of minor importance. The non-orthogonality necessitates a transformation from covariant projections to contravariant motor components. In tensor theory of the vestibulo-ocular reflex of vertebrates, this is widely assumed to be a linear operation performed by a metric tensor. The fly's solution is a linear tensor operation supplemented by a non-linear bilateral inhibition for the pitch reaction.

摘要

苍蝇通过其运动的平衡棒所检测到的科里奥利力来获取自身旋转的信息。通过振动苍蝇身体模拟旋转刺激并同时观察补偿性头部和翅膀反应的方法,对平衡棒系统中的信息处理进行了分析。尽管作用在一个平衡棒上的力包含绕三个正交轴旋转的科里奥利项,但只有一个平衡棒的苍蝇只有两个测量轴,它们由侧向力分量编码。有两个平衡棒的苍蝇有两个垂直测量轴和两个水平轴,后者跨度约为120度。因此,三维转向信息是通过在一个高度非正交系统中的双边计算获得的。在高达1000度/秒的刺激速度范围内,对完整苍蝇和只有一个平衡棒的苍蝇的比较表明,对于头部滚动反应,来自两个平衡棒的输入是相加的,而对于俯仰反应,相加的输入通过双边抑制进行修改。这种非线性操作在头部反应的情况下,对于所有刺激方向都能产生均匀的增益和轴保真度。高速时的反应饱和发生在双边相加之后。双翅目昆虫平衡棒系统中非正交性的功能后果显然是对俯仰的敏感性高于滚动。使“混淆区域”最小化(这是支持正交性的一个论据)似乎不太重要。非正交性需要从协变投影转换为逆变运动分量。在脊椎动物前庭眼反射的张量理论中,这被广泛认为是由度量张量执行的线性操作。苍蝇的解决方案是一个线性张量操作,并辅以针对俯仰反应的非线性双边抑制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验