Mishra V K, Palgunachari M N, Segrest J P, Anantharamaiah G M
Department of Medicine, University of Alabama-Birmingham Medical Center 35294.
J Biol Chem. 1994 Mar 11;269(10):7185-91.
Class A amphipathic helixes present in exchangeable plasma apolipoproteins are characterized by the location of positively charged amino acid residues at the non-polar-polar interface and negatively charged amino acid residues at the center of the polar face. The objectives of the present study were: (i) to investigate the role of hydrocarbon side chain length of the interfacial positively charged amino acid residues in the lipid affinity of class A amphipathic helixes, and (ii) to investigate the importance of the nature of interfacial charge in the lipid affinity of class A amphipathic helixes. Toward this end, lipid interactions of the following two analogs of the class A amphipathic helix, Ac-18A-NH2 (acetyl-Asp-Trp-Leu-Lys-Ala-Phe-Tyr- Asp-Lys-Val-Ala-Glu-Lys-Leu-Lys-Glu-Ala-Phe-NH2), and Ac-18A(Lys > Haa)-NH2 (acetyl-Asp-Trp-Leu-Haa-Ala-Phe-Tyr-Asp-Haa-Val-Ala-Glu-Haa-Leu-Haa-Glu- Ala-Phe-NH2) (Haa = homoaminoalanine), were studied. The side chain of Haa has two CH2 groups less than that of lysine. The lipid affinities of these two peptide analogs were compared with that of Ac-18R-NH2, an analog of Ac-18A-NH2 with positions of the charged amino acid residues reversed. The techniques used in these studies were circular dichroism, fluorescence spectroscopy, right-angle light scattering measurements, and differential scanning calorimetry. The results of these studies indicated the following rank order of lipid affinity: Ac-18A-NH2 > Ac-18A(Lys > Haa)-NH2 > Ac-18R-NH2. These results are in agreement with the "snorkel" model proposed earlier to explain the higher lipid affinity of class A amphipathic helixes (Segrest, J. P., Loof, H. D., Dohlman, J. G., Brouillette, C. G., and Anantharamaiah, G. M. (1990) Proteins Struct. Funct. Genetics 8, 103-117). In addition, it was observed from the differential scanning calorimetry studies that Ac-18A-NH2 and Ac-18A(Lys > Haa)-NH2 interact more strongly than Ac-18R-NH2 with negatively charged dimyristoyl phosphatidylglycerol. The weaker interaction of Ac-18R-NH2 with dimyristoyl phosphatidylglycerol is suggested to be due to electrostatic repulsion between the negatively charged lipid and the interfacial negative charges of the peptide.
可交换血浆载脂蛋白中存在的A类两亲性螺旋的特征是,带正电荷的氨基酸残基位于非极性-极性界面,带负电荷的氨基酸残基位于极性面中心。本研究的目的是:(i)研究界面带正电荷氨基酸残基的烃侧链长度在A类两亲性螺旋脂质亲和力中的作用,以及(ii)研究界面电荷性质在A类两亲性螺旋脂质亲和力中的重要性。为此,研究了A类两亲性螺旋的以下两种类似物,Ac-18A-NH2(乙酰基-天冬氨酸-色氨酸-亮氨酸-赖氨酸-丙氨酸-苯丙氨酸-酪氨酸-天冬氨酸-赖氨酸-缬氨酸-丙氨酸-谷氨酸-赖氨酸-亮氨酸-赖氨酸-谷氨酸-丙氨酸-苯丙氨酸-NH2)和Ac-18A(Lys>Haa)-NH2(乙酰基-天冬氨酸-色氨酸-亮氨酸-Haa-丙氨酸-苯丙氨酸-酪氨酸-天冬氨酸-Haa-缬氨酸-丙氨酸-谷氨酸-Haa-亮氨酸-Haa-谷氨酸-丙氨酸-苯丙氨酸-NH2)(Haa = 高同型氨基丙氨酸)的脂质相互作用。Haa的侧链比赖氨酸少两个CH2基团。将这两种肽类似物的脂质亲和力与Ac-18R-NH2进行比较,Ac-18R-NH2是Ac-18A-NH2的一种类似物,其带电荷氨基酸残基的位置相反。这些研究中使用的技术有圆二色性、荧光光谱、直角光散射测量和差示扫描量热法。这些研究结果表明脂质亲和力的顺序如下:Ac-18A-NH2>Ac-18A(Lys>Haa)-NH2>Ac-18R-NH2。这些结果与先前提出的“通气管”模型一致,该模型用于解释A类两亲性螺旋较高的脂质亲和力(Segrest,J.P.,Loof,H.D.,Dohlman,J.G.,Brouillette,C.G.,和Anantharamaiah,G.M.(1990年)《蛋白质结构、功能与遗传学》8,103 - 117)。此外,从差示扫描量热法研究中观察到,Ac-18A-NH2和Ac-18A(Lys>Haa)-NH2与带负电荷的二肉豆蔻酰磷脂酰甘油的相互作用比Ac-18R-NH2更强。Ac-18R-NH2与二肉豆蔻酰磷脂酰甘油的较弱相互作用被认为是由于带负电荷的脂质与肽的界面负电荷之间的静电排斥。