Suppr超能文献

Heat shock protein induction blocks hormone-sensitive steroidogenesis in rat luteal cells.

作者信息

Khanna A, Aten R F, Behrman H R

机构信息

Department of Obstetrics/Gynecology, Yale University, New Haven, CT 06520.

出版信息

Steroids. 1994 Jan;59(1):4-9. doi: 10.1016/0039-128x(94)90037-x.

Abstract

A variety of agents induce heat shock proteins (HSPs) in addition to heat shock. The heat shock response and its effects on luteal function have not been investigated, but provocatively, many of the agents known to induce HSPs impair progesterone synthesis in luteal cells. We therefore investigated whether HSP induction might influence luteal function. Rat luteal cells exposed to a commonly used heat shock paradigm (45 degrees C; 10 min) were shown to induce HSP of 70 kDa (HSP-70). Heat shock also caused a complete abrogation of LH-sensitive progesterone and 20 alpha-dihydroprogesterone secretion, and blocked steroidogenesis in response to 8-bromo-cAMP and forskolin. In contrast, heat shock had no effect on cAMP accumulation in response to LH or forskolin, or on basal progestin secretion. Heat shock inhibition of steroidogenesis was fully reversed by 22R-hydroxycholesterol (22-OH cholesterol), a cell- and mitochondria-permeant cholesterol analog. Inhibition of transcription with actinomycin D blocked HSP-70 induction and significantly reversed the inhibition of steroidogenesis by heat shock treatment. The antisteroidogenic response of heat shock was coincident with induction of HPSs and both events were transcription dependent. These findings provide strong evidence that HSP induction inhibits steroidogenesis. The mechanism of the antisteroidogenic action of HSP induction appears to be due to interference with translocation of cholesterol to mitochondrial cytochrome P450scc, a conclusion based on reversal of inhibition by 22-OH cholesterol.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验