Ding X Q, Butzlaff C, Bill E, Pountney D L, Henkel G, Winkler H, Vasák M, Trautwein A X
Institut für Physik, Medizinische Universität zu Lübeck, Germany.
Eur J Biochem. 1994 Mar 15;220(3):827-37. doi: 10.1111/j.1432-1033.1994.tb18685.x.
The magnetic properties of the Fe(II)-binding sites in Fe(II)7-metallothionein (MT) have been studied using Mössbauer spectroscopy and magnetic-susceptibility measurements. In agreement our previous results, simulation of the Mössbauer spectra showed the presence of paramagnetic and diamagnetic subspectra in the ratio 3:4. By comparison with Mössbauer spectra of the inorganic adamantane-like (Et4N)2[Fe4(SEt)10] model compound, the diamagnetic component in Fe(II)7-MT has been assigned to a four-metal cluster in which there is antiferromagnetic coupling between the high-spin Fe(II) ions. It is suggested that the organization of this cluster is similar to that determined in the three-dimensional structure of the protein, containing diamagnetic Zn(II) and/or Cd(II) ions. From magnetic-susceptibility studies, an average magnetic moment of approximately 8.5 microB was obtained for the three remaining bound Fe(II) ions, responsible for the paramagnetic component observed in the Mössbauer studies. This value is slightly lower than that for three completely uncoupled Fe(II) ions, suggesting the existence of a three-metal cluster within which there is weak exchange coupling between adjacent Fe(II) ions. The spin-Hamiltonian formalism including, besides zero-field and Zeeman interaction, also exchange interaction among the three Fe(II) ions in the three-metal cluster, H = -J12 (S1.S2)-J23 (S2.S3)-J13 (S1.S3), was applied to simulate both magnetic-Mössbauer and magnetic-susceptibility data. Reasonable fits were achieved only with values magnitude of J12 = magnitude of J23 = magnitude of J13 = magnitude of J < 1 cm-1. Such a situation could not be reconciled with the chair-like geometry of the [M3(CysS)9]3- cluster determined with paramagnetic metal ions, where significantly stronger coupling would be anticipated (magnitude of J = 50-70 cm-1). However, modest exchange-coupling properties have been reported for a number of crystallographically characterized trinuclear [Fe3(SR)3X6]3- clusters (X = Cl, Br; R = Phe, p-tolyl, 2,6-Me2C6H3) distinguished by the preferential formation of a planar Fe3(mu 2-SR)3 ring [Whitener, M. A., Bashkin, J. A., Hagen, K. S., Girerd, J.-J., Gamp, E. Edelstein, N. & Holm, R. H. (1986) J. Amer. Chem. Soc. 108, 5607-5620]. It is therefore more likely that a pseudo-planar geometry rather than a chair-like geometry is present in the Fe3 cluster of Fe(II)7-MT. This would represent the first example of structural differences on binding divalent metal ions to this protein.
利用穆斯堡尔光谱和磁化率测量方法,对Fe(II)7-金属硫蛋白(MT)中Fe(II)结合位点的磁性进行了研究。与我们之前的结果一致,穆斯堡尔光谱模拟显示顺磁性和抗磁性子光谱的比例为3:4。通过与无机类金刚烷型(Et4N)2[Fe4(SEt)10]模型化合物的穆斯堡尔光谱进行比较,Fe(II)7-MT中的抗磁性成分被归因于一个四金属簇,其中高自旋Fe(II)离子之间存在反铁磁耦合。有人认为,这个簇的结构与蛋白质三维结构中确定的结构相似,其中含有抗磁性的Zn(II)和/或Cd(II)离子。根据磁化率研究,对于其余三个负责穆斯堡尔研究中观察到的顺磁性成分的结合Fe(II)离子,获得了约8.5微玻尔的平均磁矩。这个值略低于三个完全未耦合的Fe(II)离子的值,表明存在一个三金属簇,其中相邻的Fe(II)离子之间存在弱交换耦合。包括零场和塞曼相互作用以及三金属簇中三个Fe(II)离子之间的交换相互作用在内的自旋哈密顿形式,即H = -J12 (S1.S2)-J23 (S2.S3)-J13 (S1.S3),被用于模拟磁性穆斯堡尔和磁化率数据。只有当J12 = J23 = J13 = J < 1 cm-1时,才能得到合理的拟合。这种情况与用顺磁性金属离子确定的[M3(CysS)9]3-簇的椅状几何结构不一致,在这种结构中预计会有更强的耦合(J = 50 - 70 cm-1)。然而,对于一些通过晶体学表征的三核[Fe3(SR)3X6]3-簇(X = Cl,Br;R = Phe,对甲苯基,2,6-Me2C6H3),已经报道了适度的交换耦合性质,其特点是优先形成平面Fe3(μ2-SR)3环[惠特纳,M. A.,巴什金,J. A.,哈根,K. S.,吉勒德,J.-J.,甘普,E.,埃德尔斯坦,N. & 霍尔姆,R. H.(1986年)《美国化学会志》108,5607 - 5620]。因此,Fe(II)7-MT的Fe3簇中更可能存在假平面几何结构而不是椅状几何结构。这将代表二价金属离子与该蛋白质结合时结构差异的第一个例子。